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Preface

Over the last twenty years or so David Bohm and I have spent many hours discussing 
the main theme of this book, namely, whether it is possible to provide an ontological 
interpretation of quantum mechanics, an issue that has been fiercely debated since its 
inception. It was quite clear from the outset that it was not going to be possible to return 
to the concepts of classical physics and we found it necessary to make some radical new 
proposals concerning the nature of reality in order to provide a coherent ontology. The 
results of our deliberations form the content of this book.

Just as the final touches were being put to the manuscript, David died suddenly. The 
week before his death we had a series of meetings in which a few outstanding questions 
were resolved. Indeed in our last meeting David expressed general satisfaction with the 
final draft and was anxious to proceed quickly with publication. I have included the results 
of those discussions, but have resisted the temptation to make any significant alterations 
while preparing the final manuscript.

I hope this book will be a fitting testimony to this very radical and original thinker 
who rejected the view of conventional quantum mechanics, not for ideological reasons, 
but because it did not provide a coherent overall view of nature, a feature that David felt 
an essential ingredient of any physical theory. It was like Escher’s “The Waterfall”, a 
fascinating picture in which region by region appeared to be carefully constructed and 
consistent, but when one stepped back to perceive the whole, a contradiction was there for 
all to see. Indeed the most radical view to emerge from our deliberations was the concept 
of wholeness, a notion in which a system formed a totality whose overall behaviour was 
richer than could be obtained from the sum of its parts. In the ontological theory that we 
present here, this wholeness is made manifest through the notion of nonlocality, a notion 
that is seemingly denied by relativity. Yet there is no observational disagreement with 
experiment. Nevertheless nonlocality does not fit comfortably within a space-time structure 
that is taken as a priori given and described by a differential manifold. Thus in the final 
chapter we present some radically new ideas which take us beyond the present paradigm. 
It was these ideas that David and I were anxious to develop further. Unfortunately his deep 
perceptions of these new possibilities will be sadly missed.

Finally I should like to warmly thank all our colleagues for helpful discussions, 
particularly Chris Dewdney, Henry Folse, Sheldon Goldstein, Dipankar Home, Pan 
Kalolerou, Abner Shimony and Henry Stapp. I should also like to thank Nora Leonard for 
her exceptional patience and skilful preparation of the manuscript.

B.J.Hiley
January 1993 



 Chapter 1 
Introduction

1.1 Why an ontological interpretation is called for

The formalism of the quantum theory leads to results that agree with experiment with 
great accuracy and covers an extremely wide range of phenomena. As yet there are no 
experimental indications of any domain in which it might break down. Nevertheless, there 
still remain a number of basic questions concerning its fundamental significance which 
are obscure and confused. Thus for example one of the leading physicists of our time, 
M.Gell-Mann [1], has said “Quantum mechanics, that mysterious, confusing discipline, 
which none of us really understands but which we know how to use”.

Just what the points are that are not clear will be specified in detail throughout this book, especial-
ly in chapters 6, 7, 8 and 14. We can however outline a few of them here in a preliminary way.

 1. Though the quantum theory treats statistical ensembles in a satisfactory way, we 
are unable to describe individual quantum processes without bringing in 
unsatisfactory assumptions, such as the collapse of the wave function.

 2.  There is by now the well-known nonlocality that has been brought out by Bell [2] in 
connection with the EPR experiment,

 3.  There is the mysterious ‘wave-particle duality’ in the properties of matter that is 
demonstrated in a quantum interference experiment.

 4.  Above all, there is the inability to give a clear notion of what the reality of a quantum 
system could be.`

All that is clear about the quantum theory is that it contains an algorithm for computing the 
probabilites of experimental results. But it gives no physical account of individual quantum 
processes. Indeed, without the measuring instruments in which the predicted results appear, the 
equations of the quantum theory would be just pure mathematics that would have no physical 
meaning at all. And thus quantum theory merely gives us (generally statistical) knowledge of how 
our instruments will function. And from this we can make inferences that contribute to our 
knowledge, for example, of how to carry out various technical processes. That is to 
say, it seems, as indeed Bohr [3] and Heisenberg [4] have implied, that quantum theory is 
concerned only with our knowledge of reality and especially of how to predict and control 
the behaviour of this reality, at least as far as this may be possible. Or to put it in more 
philosophical terms, it may be said that quantum theory is primarily directed towards 
epistemology which is the study that focuses on the question of how we obtain our 
knowledge (and possibly on what we can do with it).

It follows from this that quantum mechanics can say little or nothing about reality 
itself. In philosophical terminology, it does not give what can be called an ontology for a 
quantum system. Ontology is concerned primarily with that which is and only secondarily 
with how we obtain our knowledge about this (in the sense, for example, that the process 
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of observation would be treated as an interaction between the observed system and the 
observing apparatus regarded as existing together in a way that does not depend significantly 
on whether these are known or not).

We have chosen as the subtitle of our book “An Ontological Interpretation of Quantum 
Theory” because it gives the clearest and most accurate description of what the book 
is about. The original papers in which the ideas were first proposed were entitled “An 
Interpretation in Terms of Hidden Variables” [5] and later they were referred to as a 
“Causal Interpretation” [6]. However, we now feel that these terms are too restrictive. 
First of all, our variables are not actually hidden. For example, we introduce the concept 
that the electron is a particle with well-defined position and momentum that is, however, 
profoundly affected by a wave that always accompanies it (see chapter 3). Far from being 
hidden, this particle is generally what is most directly manifested in an observation. The 
only point is that its properties cannot be observed with complete precision (within the 
limits set by the uncertainty principle). Nor is this sort of theory necessarily causal. For, as 
shown in chapter 9, we can also have a stochastic version of our ontological interpretation. 
The question of determinism is therefore a secondary one, while the primary question is 
whether we can have an adequate conception of the reality of a quantum system, be this 
causal or be it stochastic or be it of any other nature.

In chapter 14 section 14.2 we explain our general attitude to determinism in more detail, 
but the main point that is relevant here is that we regard all theories as approximations with 
limited domains of validity. Some theories may be more nearly determinate, while others 
are less so. The way is open for the constant discovery of new theories, but ultimately these 
must be related coherently. However, there is no reason to suppose that physical theory 
is steadily approaching some final truth. It is always open (as has indeed generally been 
the case) that new theories will have a qualitatively different content within which the 
older theories may be seen to fit together, perhaps in some approximate way. Since there 
is no final theory, it cannot be said that the universe is either ultimately deterministic or 
ultimately in-deterministic. Therefore we cannot from physical theories alone draw any 
conclusions, for example, about the ultimate limits of human freedom.

It will be shown throughout this book that our interpretation gives a coherent treatment 
of the entire domain covered by the quantum theory. This means that it is able to lead to 
the same statistical results as do other generally accepted interpretations. In particular these 
include the Bohr interpretation and variations on this which we shall discuss in chapter 2 
(e.g. the interpretations of von Neumann and Wigner). For the sake of convenience we 
shall put these altogether and call them the conventional interpretation.

Although our main objective in this book is to show that we can give an ontological 
explanation of the same domain that is covered by the conventional interpretation, we do 
show in the last two chapters how it is possible in our approach to extend the theory in new 
ways implying new experimental consequences that go beyond the current quantum theory. 
Such new theories could be tested only if we could find some domain in which the quantum 
theory actually breaks down. In the last two chapters we sketch some new theories of this 
kind and indicate some areas in which one may expect the quantum theory to break down 
in a way that will allow for a test.

Partly because it has not generally been realised that our interpretation has such new 
possibilities, the objection has been raised that it has no real content of its own and that it 
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merely recasts the content of the conventional interpretation in a different language. Critics 
therefore ask: “If this is the case, why should we consider this interpretation at all?”

We can answer this objection on several levels. Firstly we make the general point that 
the above argument could be turned the other way round. Thus de Broglie proposed very 
early what is, in essence, the germ of our approach. But this met intense opposition from 
leading physicists of the day. This was especially manifest at the Solvay Congress of 1927 
[7]. This opposition was continued later when in 1952 one of us [5] proposed an extension 
of the theory which answered all the objections and indeed encouraged de Broglie to take 
up his ideas again. (For a discussion of the history of this development and the sociological 
factors behind it, see Cushing [8] and also Pinch [9].)

Let us suppose however that the Solvay Congress had gone the other way and that 
de Broglie’s ideas had eventually been adopted and developed. What then would have 
happened, if 25 years later some physicists had come along and had proposed the current 
interpretation (which is at present the conventional one)? Clearly by then there would be 
a large number of physicists trained in the de Broglie interpretation and these would have 
found it difficult to change. They would naturally have asked: “What do we concretely 
gain if we do change, if after all the results are the same?” The proponents of the suggested 
‘new’ approach would then probably have argued that there were nevertheless some subtle 
gains that it is difficult to weigh concretely. This is the kind of answer that we are giving 
now to this particular criticism of our own interpretation. To fail to consider such an answer 
seriously is equivalent to the evidently specious argument that the interpretation that “gets 
in there first” is the one that should always prevail.

Let us then consider what we regard as the main advantages of our interpretation. 
Firstly, as we shall explain in more detail throughout the book but especially in chapters 
13, 14 and 15, it provides an intuitive grasp of the whole process. This makes the theory 
much more intelligible than one that is restricted to mathematical equations and statistical 
rules for using these equations to determine the probable outcomes of experiments. Even 
though many physicists feel that making such calculations is basically what physics is all 
about, it is our view that the intuitive and imaginative side which makes the whole theory 
intelligible is as important in the long run as is the side of mathematical calculation.

Secondly, as we shall see in chapter 8, our interpretation can be shown to contain a 
classical limit within it which follows in a natural way from the theory itself without the 
need for any special assumptions. On the other hand, in the conventional interpretation, it is 
necessary to presuppose a classical level before the quantum theory can have any meaning 
(see Bohm [10]). The correspondence principle then demonstrates the consistency of the 
quantum theory with this presupposition. But this does not change the fact that without 
presupposing a classical level there is no way even to talk about the measuring instruments 
that are essential in this interpretation to give the quantum theory a meaning.

Because of the need to presuppose the classical level (and perhaps eventually an 
observer), there is no way in the conventional interpretation to give a consistent account 
of quantum cosmology. For, as this interpretation now stands, it is always necessary to 
assume an observer (or his proxy in the form of an instrument) which is not contained in 
the theory itself. If this theory is intended to apply cosmologically, it is evidently necessary 
that we should not, from the very outset, assume essential elements that are not capable of 
being included in the theory. Our interpretation does not suffer from this difficulty because 
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the classical level flows out of the theory itself and does not have to be presupposed from 
outside.

Finally as we have already pointed out our approach has the potentiality for extension to 
new theories with new experimental consequences that go beyond the quantum theory.

However, because our interpretation and the many others that have been proposed 
lead, at least for the present, to the same predictions for the experimental results, there 
is no way experimentally to decide between them. Arguments may be made in favour or 
against any of them on various bases, which include not only those that we have given here, 
but also questions of beauty, elegance, simplicity and economy of hypotheses. However, 
these latter are somewhat subjective and depend not only on the particular tastes of the 
individual, but also on socially adopted conventions, consensual opinions and many other 
such factors which are ultimately imponderable and which can be argued many ways (as 
we shall indeed point out in more detail especially in chapters 14 and 15).

There does not seem to be any valid reason at this point to decide finally what would 
be the accepted interpretation. But is there a valid reason why we need to make such a 
decision at all? Would it not be better to keep all options open and to consider the meaning 
of each of the interpretations on its own merits, as well as in comparison with others? This 
implies that there should be a kind of dialogue between different interpretations rather than 
a struggle to establish the primacy of any one of them. (This point is discussed more fully 
in Bohm and Peat [11].)

1.2 Brief summary of contents of the book

We complete this chapter by giving a brief summary of the contents of this book.
The book may be divided roughly into four parts. The first part is concerned with the 

basic formulation of our interpretation in terms of particles. We begin in chapter 2 by 
discussing something of the historical background of the conventional interpretation, 
going into the problems and paradoxes that it has raised. In chapter 3 we go on to propose 
our ontological interpretation for the one-body system which however is restricted to a 
purely causal form at this stage (see Bohm and Hiley [12]). We are led to a number of new 
concepts, especially that of active information, which help to make the whole approach 
more intelligible, and we illustrate the approach in terms of a number of key examples.

In chapter 4 we extend this interpretation to the many-body system and we find that this 
leads to further new concepts. The most important of these are nonlocality and objective 
wholeness. That is to say, particles may be strongly connected even when they are far apart, 
and this arises in a way which implies that the whole cannot be reduced to an analysis in 
terms of its constituent parts.

In chapter 5 we apply these ideas to study the process of transition. Firstly in terms of 
the penetration of a barrier and secondly in terms of ‘jumps’ of an atom from one quantum 
state to another. In both cases we see that these transitions can be treated objectively 
without reference to observation or measurement. Moreover the process of transition can 
in principle be followed in detail, at least conceptually, in a way that makes the process 
intelligible (whereas in the conventional interpretation, as shown in chapter 2, no such 
account is possible). This sort of insight into the process enables us to understand, for 
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example, how quantum transitions can take place in a time that is very much shorter than 
the mean life time of the quantum state.

In the next part of the book we discuss some of the more general implications of our 
approach. Thus in chapter 6 we go into the theory of measurement. We treat this as an 
objective process in which the measuring instrument and what is observed interact in a 
well-defined way. We show that after the interaction is over, the system enters into one of 
a set of ‘channels’, each of which corresponds to the possible results of the measurement. 
The other channels are shown to become inoperative. There is never a ‘collapse’ of the 
wave function. And yet everything behaves as if the wave function had collapsed to one 
of the channels.

The probability of a particular result of the interaction between the instrument and 
the observed object is shown to be exactly the same as that assumed in the conventional 
interpretation. But the key new feature here is that of the undivided wholeness of the 
measuring instrument and the observed object, which is a special case of the wholeness to 
which we have alluded in connection with quantum processes in general. Because of this, 
it is no longer appropriate, in measurements to a quantum level of accuracy, to say that we 
are simply ‘measuring’ an intrinsic property of the observed system. Rather what actually 
happens is that the process of interaction reveals a property involving the whole context in 
an inseparable way. Indeed it may be said that the measuring apparatus and that which is 
observed participate irreducibly in each other, so that the ordinary classical and common 
sense idea of measurement is no longer relevant.

The many paradoxes that have arisen out of the attempt to formulate a measurement 
theory in the conventional interpretation are shown not to arise in our interpretation. These 
include the treatment of negative measurements (i.e. results following from the non-firing 
of the detector), the Schrödinger cat paradox [13], the delayed choice experiments [14] and 
the watchdog effect (Zeno’s paradox)[15].

In chapter 7 we work out the implications of nonlocality in the framework of our 
interpretation. We include a discussion of the Bell inequality [2] and the EPR experiment 
[16]. We then go on to discuss how nonlocality disappears in the classical limit, except in 
the special case of the symmetry and antisymmetry of the wave function for which there is 
a superselection rule, implying that EPR correlations can be maintained indefinitely even 
at the large scale. This explains how the Pauli exclusion principle can be understood in our 
interpretation. Finally we discuss and answer objections to the concept of nonlocality.

In chapter 8 we discuss how the classical limit of the quantum theory emerges in the large 
scale level, without any break in the whole process either mathematically or conceptually. 
Thus, as we have already explained earlier, we do not need to presuppose the classical level 
as required in the conventional interpretation.

In the next part of the book we extend our approach in several ways. Firstly in chapter 
9, we discuss the role of statistics in our interpretation. We show that in typical situations 
the particles behave chaotically in a many-body system. From this we can infer that our 
originally assumed probability density, P=|ψ|2, will arise naturally from an arbitrary 
initial probability distribution. We then go on to treat quantum statistical mechanics in 
our framework and show how the density matrix can be derived as a simplified form that 
expresses what is essential about the statistical distribution of wave functions.



6 The undivided universe

Finally we discuss an alternative approach to this question which has been explored 
in the literature [17], i.e. a stochastic explanation in which one assumes that the particle 
has a random component to its velocity over and above that which it has in the causal 
interpretation. We show that in this theory, an arbitrary probability distribution again 
approaches |ψ|2, but now this will happen even for single particle systems that would not, 
in the causal interpretation, give rise to chaotic motion.

In chapter 10 we develop an ontological interpretation of the Pauli equation. We begin 
with a discussion of the history of this interpretation, showing that the simple model of a 
spinning extended body will not work if we wish to generalise our theory to a relativistic 
context. Instead, we are led to begin with an ontological interpretation of the Dirac 
equation and to consider its non-relativistic limit. We show that in addition to its usual 
orbital motion, the particle then has an additional circulatory motion which accounts for 
its magnetic moment and its spin. We extend our treatment to the many-body system and 
illustrate this in terms of the EPR experiment for two particles of spin one-half.

In chapter 11 we go on to consider the ontological interpretation of boson fields. We 
first give reasons showing the necessity for starting with quantum field theories rather than 
particle theories in extending our interpretation to bosonic systems. We then develop our 
ontological interpretation in detail, but from a non-relativistic point of view. The key new 
concept here is that the field variables play the role which the particle variables had in the 
particle theory, while there is a superwave function of these field variables, that replaces 
the wave function of the particle variables.

We illustrate this approach with several relevant examples. We then go on to explain why 
the basically continuous field variables nevertheless deliver quantised amounts of energy 
to material systems such as atoms. We do this without the introduction of the concept 
of a photon as a ‘bullet-like’ particle. Finally we show how our interpretation works in 
interference experiments of various kinds.

In chapter 12 we discuss the question of the relativistic invariance of our approach. We 
begin by showing that the interpretation is relativistically invariant for the one-particle Dirac 
equation. However, for the many-particle Dirac equation, only the statistical predictions 
are relativistically invariant. Because of nonlocality, the treatment of the individual system 
requires a particular frame of reference (e.g. the one in which nonlocal connections would 
be propagated instantaneously). The same is shown to hold in our interpretation for bosonic 
fields [18].

We finally show, however, that it is possible to obtain a consistent approach by assuming 
a sub-relativistic level of stochastic movement of particles which contains the ordinary 
statistical results of the quantum theory as well as the behaviour of the world of large scale 
experience which is Lorentz covariant. Therefore we are able to explain the covariance of 
all the experimental observations thus far available (at least for all practical purposes). We 
point out several situations in which this sort of theory could be tested experimentally and 
give different results from those of the current theory in any domain in which relativity 
(and possibly quantum theory) were to break down.

We then come to the final part of the book which is concerned with various other 
ontological interpretations that have been proposed and with modifications of the quantum 
theory that are possible in terms of these interpretations. The first of these is the many-worlds 
interpretation which has recently aroused the interest of people working in cosmology. We 
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begin by pointing out that there is as yet no generally agreed version of this interpretation 
and that there are two different bodies of opinion about it. One of these starts from Everett’s 
approach [19] and the other from DeWitt’s [20]. Though these are frequently regarded as 
the same, we show that there are important differences of principle between them. We 
discuss these differences in some detail and also the as yet not entirely successful efforts 
of other workers in the field to deal with the unresolved problems in these two approaches. 
Finally we make a comparison between our interpretation and the many-worlds point of 
view.

The many-worlds interpretation was not explicitly aimed at going beyond the limits 
of the current quantum theory. In chapter 14 we discuss theories that introduce concepts 
that do go beyond the current quantum theory, at least in principle. The first of these is the 
theory of Ghirardi, Rimini and Weber [21] who propose nonlinear, nonlocal modifications 
of Schrödinger’s equation that would cause the wave function actually to collapse. The 
modifications are so arranged that the collapse process is significant only for large scale 
systems containing many particles, while for systems containing only a few particles, the 
results are the same, for all practical purposes, as those of the current linear and local form 
of Schrödinger’s equation.

Even more striking changes are proposed by Stapp [22] and by Gell-Mann and Hartle 
[23], the latter of whom develop their ideas in considerable detail. They deal with the 
whole question cosmologically from the very outset by introducing mathematical concepts 
that enable them to describe actual histories of processes taking place in the cosmos, from 
the beginning of the universe to the end.

We give a careful analysis of these approaches. Both of them aim to do what the many-
worlds interpretation has not yet succeeded in doing adequately, i.e. to show that the quan-
tum theory contains a ‘classical world’ within it. While they have gone some way towards 
this goal, it becomes clear that there are still unresolved problems standing in the way of 
its achievement.

We also give a critical comparison between their approach and ours, pointing out that 
their histories actually involve a mathematical assumption analogous to that involved in 
the notion of particles in our interpretation. Therefore it is not basically a question of the 
number of assumptions. Rather, we suggest that the main advantage claimed over ours, 
at least implicitly, is that it expresses all concepts in terms of Hilbert space, whereas we 
introduce a notion of particles that goes outside this framework.

Finally we discuss some proposals of our own going beyond the quantum theory. Basi-
cally these are an extension of what we suggested in chapter 12. The idea is that there will 
be a stochastic sub-quantum and sub-relativistic level in which the current laws of physics 
will fail. This will probably first be encountered near the Planck length of 10–33 cm. How-
ever, over longer distances our stochastic interpretation of relativistic quantum theory will 
be recovered as a limiting case, but as we have suggested earlier, experiments involving 
shorter times could reveal significant differences from the predictions of the current rela-
tivistic quantum theory.

Up to this point we have, in a certain sense, been discussing in the traditional Cartesian 
framework even though many new concepts have been introduced within this framework. 
In chapter 15, the final chapter of the book, we introduce a radically new overall framework 
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which we call the implicate or enfolded order. In this chapter we shall give a sketch of these 
ideas which are in any case only in early stages of development.

We begin by showing that the failure of quantum theory and relativity to cohere concep-
tually already begins to point to the need for such a new order for physics as a whole. We 
then introduce the implicate order and explain it in terms of a number of examples which 
illustrate the enfoldment of a whole structure into each region of space, e.g. as happens in a 
hologram. We show that the notion of order based on such an enfoldment gives an accurate 
and intuitive grasp of the meaning of the propagator function of quantum mechanics and, 
more generally, of Hilbert space itself. We indicate how this notion is contained mathemati-
cally in an algebra which is essentially the algebra of quantum mechanics itself.

These ideas are connected with our ontological interpretation by means of a model of a 
particle as a sequence of incoming and outgoing waves, with successive waves very close 
to each other. For longer times, this approximates our stochastic trajectories, while for 
shorter times it leads to a very new concept. What is to be emphasised here is that in this 
way our trajectory model can be incorporated into the framework of Hilbert space. When 
this is done, we see that it is part of a larger set of possible theories which include those of 
Stapp and Gell-Mann and Hartle.

One of the main new ideas implied by this approach is that the geometry and the dynam-
ics have to be in the same framework, i.e. that of the implicate order. In this way we come 
to a deep unity between quantum theory and geometry in which each is seen to be inher-
ently conformable to the other. We therefore do not begin with traditional Cartesian notions 
of order and then try to impose the dynamics of quantum theory on this order by using the 
algorithm of ‘quantisation’. Rather quantum theory and geometry are united from the very 
outset and are seen to emerge together from what may be called pre-space.

Finally we discuss certain analogies between the implicate order and consciousness and 
suggest an approach in which the physical and the mental sides would be two aspects of a 
greater order in which they are inherently related. 
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 Chapter 2  
Ontological versus epistemological  

interpretations of the quantum theory

2.1 Classical ontology

In classical physics there was never a serious problem either about the ontology, or about the 
epistemology. With regard to the ontology, one assumed the existence of particles and fields 
which were taken to be essentially independent of the human observer. The epistemology 
was then almost self-evident because the observing apparatus was supposed to obey the same 
objective laws as the observed system, so that the measurement process could be understood 
as a special case of the general laws applying to the entire universe.

2.2 Quantum epistemology

As we have already brought out in chapter 1, in quantum mechanics this simple approach to 
ontology and epistemology was found to be no longer applicable. In the present chapter we 
shall go into this question in more detail especially in connection with the way this subject is 
treated in the conventional interpretation.

Let us begin with the fact that quantum mechanics was introduced as an essentially statisti-
cal theory. Of course statistical theories in general are capable of being given a straightforward 
ontological interpretation, for example, in terms of an objective stochastic process. The epis-
temology could then be worked out along the same lines as for a deterministic theory such as 
classical mechanics. But Bohr and Heisenberg raised further questions about the validity of 
such an approach in the quantum theory. Their argument was based on two postulates: (a) the 
indivisibility of the quantum of action and (b) the unpredictability and uncontrollability of its 
consequences in each individual case.

 
Figure 2.1: Sketch of Heisenberg microscope
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It follows from the above assumptions, as we shall show in more detail presently, that in 
the measurement of p and x, for example, there is a maximum possible accuracy given by 
the uncertainty principle ΔpΔx> h. This is clearly a limitation on the possible accuracy and 
relevance of our knowledge of the observed system. However, this has been taken not as a 
purely epistemological limitation on our knowledge, but also as an ontological limitation 
on the possibility of defining the state of being of the observed system itself.

To bring out what is meant here let us briefly review the Heisenberg microscope 
argument. A particle at some point P (see figure 2.1) scatters a quantum of energy hv which 
follows the path POQ to arrive at the focal point Q of the lens. From a knowledge of this 
point Q there is an ambiguity in our ability to attribute the location of the point P to within 
the resolving power of the lens Δx=λ/sinα where λ is the wave length and α is the aperture 
angle of the lens. This follows from the wave nature of the quantum that links P to Q. But 
because the light has a particle nature as well, the quantum has a momentum hv/c and it 
produces a change of momentum in the particle Δp=hvsinθ/c where θ is the angle through 
which the quantum has been scattered by the particle. The indivisibility of the quantum 
guarantees that its momentum cannot be reduced below this value, while the assumed 
unpredictability and u ncon troll ability of the scattering process within θ≤α guarantees 
that we cannot make an unambiguous attribution of momentum to the particle within the 
range Δp=hvsinα/c. And it is well known that from this we obtain Heisenberg’s uncertainty 
relation ΔpΔx≥h.

Relationships of this kind implied, for Heisenberg and Bohr, that the basic properties 
of the particle, i.e. its position and momentum, are not merely uncertain to us, but rather 
that there is no way to give them a meaning beyond the limit set by Heisenberg’s principle. 
They inferred from this that there is, as we have already pointed out, an inherent ambiguity 
in the state of being of the particle. And this in turn implied that, at the quantum level of 
accuracy, there is no way to say what the electron is and what it does, such concepts being 
applicable approximately only in the classical (correspondence) limit.

This evidently represented a totally new situation in physics and Bohr felt that what 
was called for was a correspondingly new way of describing an experiment in which the 
entire phenomenon was regarded as a single and unanalysable whole [1]. In order to bring 
out the full meaning of Bohr’s very subtle thoughts on this point, let us contrast his view 
of the quantum phenomenon with the ordinary approach to the classical phenomenon. To 
do this we may take the classical counterpart to the Heisenberg microscope as an example. 
The relevant phenomena can be described by first of all giving the overall experimental 
arrangement (the lens, the photographic plate, the scattering block and the incident light). 
Secondly one has to specify the experimental result (the spot on the photographic plate). 
But of course this result by itself would be of very little interest. The main point of the 
phenomenon is to give the meaning of the result. (In this case the location of the particle 
that scattered the light.) Evidently this is possible only if we know the behaviour of the light 
that links the experimental result to this meaning. Classically this behaviour is well defined 
since it follows from the wave nature of light. Since the light can be made arbitrarily weak 
and of arbitrarily short wave length, there is clearly no limit to the possible accuracy of the 
link between the experimental result and its meaning. That is to say the disturbance of the 
‘particle’ and the ambiguity of its properties can be made negligible. This implies that the 
particle can then be considered to be essentially independent of the rest of the phenomenon 
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in which its properties were determined. Therefore it is quite coherent to use the customary 
language which says that we have established a state of being of this independent particle 
as having been observed, and so that the measurement could then be left entirely out of the 
account in discussing the behaviour of the particle from this point on.

In the corresponding quantum phenomenon there is an entirely different state of affairs. 
For, as we have already pointed out, the quantum link connecting the experimental result 
with its meaning is indivisible, unpredictable and uncontrollable. The meaning of such a 
result can, therefore, no longer be coherently described as referring unambiguously to the 
properties of a particle that exists independently of the rest of the phenomenon. Instead this 
meaning has to be regarded as an inseparable feature of the entire phenomenon itself. Or, to 
put it more succinctly, the form of the experimental conditions and the content (meaning) of 
the experimental results are a whole, not further analysable. It is this whole that, according 
to Bohr, constitutes the quantum phenomenon.

It follows from this that given a different experimental arrangement (e.g. one needed 
to measure a complementary variable more accurately) we would have a different total 
phenomenon. The two phenomena are mutually exclusive in the sense that the conditions 
needed to determine one are incompatible with those needed to determine the other (whereas 
classically the two sets of conditions are, in principle, compatible).

Bohr emphasises that incompatible phenomena of this kind actually complement each 
other in the sense that together they provide a complete though ambiguous description of 
the ‘atomic object’. These complementary descriptions “cannot be combined into a single 
picture by means of ordinary concepts, they represent equally essential aspects of any 
knowledge of the object in question that can be obtained in this domain” [2]. Classically two 
such concepts can always be combined in a single unambiguous picture. This enables us to 
form a well-defined concept of an actual process independent of the means of observation 
(in which, for example, a particle actually moves from one state to another). But at the 
quantum level where the indivisibility of the quantum of action implies an ambiguity in the 
distinction between the observed object and observing apparatus, there is no way to talk 
consistently about such a process. It follows from Bohr’s approach that very little can be 
said about quantum ontology.*

One has at most an unambiguous classical ontology and the quantum theory is reflected 
in this ontology by requiring basic concepts such as p and x to be ambiguous. One might 
perhaps suppose that there could be some unambiguous deeper quantum concepts of 
a new kind. But Bohr would say there is no way to relate these definitely to what we 
ordinarily regard as objective reality, i.e. the domain in which classical physics is a good 
approximation.

We can summarise Bohr’s position as saying that all physical concepts must correspond 
to phenomenon, i.e. appearances. Each phenomenon is an abstraction. This is also true 
classically. But because the correspondence between the phenomenon and the independent 
reality which underlies it may, in principle, be unambiguous, and because all the phenomena 
are mutually compatible, we may say that the independent reality can be reflected completely 
in the whole set of phenomena. This means in effect that we can know the independent 

* Folse [3] has made it clear that Bohr is not simply a positivist, but that the notion of some 
kind of independent physical reality underlies all his thinking.
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reality itself. But quantum mechanically we cannot apply all relevant abstractions together 
in an unambiguous way and therefore whatever we say about independent reality is only 
implicit in this way of using concepts.

What then is the meaning of the mathematics of the quantum theory (which is very well 
defined indeed)? Bohr describes this as the quantum algorithm which gives the probabilities 
of the possible results for each kind of experimental arrangement [4]. Clearly this means 
that the mathematics must not be regarded as reflecting an independent quantum reality 
that is well defined, but rather that it constitutes in essence only knowledge about the 
statistics of the quantum phenomena.

All this, as we have already pointed out, is a consequence of the indivisibility of the 
quantum of action which is very well verified experimentally. Bohr therefore does not 
regard his notion of complementary as based on philosophical assumptions. Rather it has 
for him an ontological significance in the sense that it says something about reality, i.e. that 
it is ambiguously related to the phenomena. He would probably say that attempts to define 
the ontology in more detail would be contradictory.

2.3 The quantum state

Bohr’s view seems to have had a very widespread influence, but his ideas do not appear to 
have been well understood by the majority of physicists. Rather the latter generally thought 
in terms of a different approach along lines initiated by Dirac, and von Neumann, in which 
the concept of a quantum state played a key role (whereas with Bohr this concept was 
hardly even mentioned and was certainly not a fundamental part of his ideas).

To understand what is meant by a quantum state we can begin with Dirac’s notion 
that each physical quantity is represented by an Hermitean operator which is called an 
observable [5]. When this is measured by a suitable apparatus the system is left with a 
wave function corresponding to an eigenfunction of this observable. In general such a 
measurement will, in agreement with Heisenberg’s principle, alter this wave function in an 
uncontrollable and unpredictable way. But the probability of a certain result n is |Cn|

2 where 
Cn is the coefficient of the nth eigenfunction in the expansion of the total wave function. 

Once we obtain such an eigenfunction we can measure the same observable again and 
again, in principle, in a time so short that the wave function does not change significantly 
(except for a phase factor which is not relevant). Each measurement will then reproduce the 
same result. In terms of the ‘naive’ ontology that pervades ordinary experience, this leads 
one to suppose that, between measurements of the same observable, the system continues to 
exist with the same wave function ψn (again, except for a phase factor). Therefore one could 
say that during this time the system is in a certain state of being, i.e. it stands independently 
of its being observed. Of course, this state might change in longer times of its own accord 
and, in addition, it would also change if a different observable were measured.

In contrast, Bohr would never allow the type of language that admitted the independent 
existence of any kind of quantum object which could be said to be in a certain state. 
That is to say, he would not regard it as meaningful to talk about, for example, a particle 
existing between quantum measurements even if the same results were obtained for a given 
observable in a sequence of such measurements. Rather, as we have seen, he considered the 
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experimental arrangement and the content (meaning) of the result to be a single unanalysable 
whole. To talk of a state in abstraction from such an experimental arrangement would, for 
Bohr, make no sense.

This general point can be clarified by considering what is in essence an intermediate 
approach adopted by Heisenberg.† He suggested that the wave function represented, not 
an actual reality, but rather a set of potentialities that could be realised according to the 
experimental conditions. A helpful analogy may be obtained by considering a seed, which 
is evidently not an actual plant, but which determines potentialities for realising various 
possible forms of the plant according to conditions of soil, rain, sunlight, wind, etc. Thus 
when the measurement of a given observable was repeated, this would correspond to a 
plant producing a seed, which growing under the same conditions, produced the same form 
of plant again (so that there was no continuously existent plant). Measurement of another 
observable would correspond to changing the experimental conditions, and this could 
produce a statistical range of possible plants of different forms. Returning to the quantum 
theory, it is clear that in this approach the apparatus is regarded as actually helping to 
‘create’ the observed results.

It must be emphasised, however, that Bohr specifically rejected this suggestion which he 
probably felt gave too much independent reality to whatever is supposed to be represented 
by the wave function. (As we recall he regarded this as only part of a calculus for predicting 
the statistics of experimental results.) Thus he states “I warned especially against phrases, 
often found in the physical literature, such as ‘disturbing of phenomena by observation’ 
or ‘creating physical attributes to atomic objects by measurement’. Such phrases are…apt 
to cause confusion,…” [7]. Bohr is evidently saying here essentially what we have said 
before, i.e. that for him it has no meaning to talk of a quantum object with its attributes 
apart from the unanalysable whole phenomenon in which it is actually observed.

It is thus clear, as we have indeed already pointed out earlier, that Bohr’s objection to 
the potentiality approach, as well as to taking the concept of quantum state too literally, 
does not represent for him a purely philosophical question. Indeed in his discussion of the 
Einstein, Podolsky and Rosen experiment [EPR], it was just this point that was crucial in 
his answer to the challenge presented by EPR. As we shall show in more detail in chapter 
7, Bohr would say that the EPR paradox was based on an inadmissible attribution of 
properties to a second particle solely on the basis of measurements that could be carried 
out on the first particle.

2.4 von Neumann’s approach to quantum theory

It is clear then that there is an important distinction between Bohr’s approach and that of 
Heisenberg with his notion of potentiality, and perhaps an even greater difference from 
that of most physicists, who give a basic significance to the concept of quantum state. The 
notion of quantum state has indeed been most systematically and extensively developed 
by von Neumann, who not only gave it a precise mathematical formulation, but who also 
attempted, in his own way, to come to grips with the philosophical issues to which this 
approach gave rise.

† This point of view was indeed proposed earlier by Bohm [6].
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It was a key part of this development to give a proof claiming to show that quantum 

mechanics had an intrinsic logical closure (in the sense, that no further concepts, e.g. 
involving ‘hidden variables’, could be introduced that would make possible a more detailed 
description of the state of the system than is afforded by the wave function). On this basis 
he concluded that the wave function yielded the most complete possible description of 
what we have been calling quantum reality, which is thus totally contained in the concept 
of a quantum state.

In order to clarify the physical meaning of these notions he developed a more detailed 
theory of measurements. This theory still gave a basic significance to epistemology because 
the only meaning attributed to the wave function was that it gave probabilities for the results 
of possible measurements (i.e. it did not begin with the assumption of an independently 
existing universe that would have meaning apart from the process in which its properties 
were measured). Nevertheless this theory gave more significance to ontology than Bohr did 
because it assumed the quantum system existed in a certain quantum state.

This state could only be manifested in phenomena at a large scale (classical) level. Thus 
he was led to make a distinction between the quantum and the classical levels. Between 
them, he said there was a ‘cut’ [8]. This is, of course, purely abstract because von Neumann 
admitted, along with physicists in general, that the quantum and classical levels had to 
exist in what was basically one world. However, for the sake of analysis one could talk 
about these two different levels and treat them as being in interaction. The effect of this 
interaction was to produce at the classical level a certain observable experimental result. 
The probability of the nth result was, of course, |Cn|

2, where the original wave function was 
ψ=∑Cnψn and ψn is an eigenfunction of the operator being measured. But reciprocally, this 
interaction produced an effect on the quantum level; that is, the wave function changed 
from its original form ψ to ψn, where n is the actual result of the measurement obtained 
at the classical level. This change has been described as a ‘collapse’ of the wave function. 
Such a collapse would violate Schrödinger’s equation, which must hold for any quantum 
system. However, this does not seem to have disturbed von Neumann unduly, probably 
because one could think that in its interaction with the classical level such a system need 
not satisfy the laws that apply when it is isolated.

One difficulty with this theory is that the location of the cut between quantum and 
classical level is to a large extent arbitrary. For example, one may include the apparatus and 
the observed object as part of a single combined system, which is to be treated quantum 
mechanically. We then observe this combined system with the aid of yet another apparatus 
which is, however, treated as being in the classical level. The ‘cut’ has then been moved to 
some point between the first apparatus and the second.

Von Neumann has given a mathematical treatment of this experiment which we shall 
sketch here. Let O be the operator that is to be measured. Let On be its eigenvalues and 
ψn(x) the corresponding eigenfunctions in the x-representation. The initial wave function 
is, as we have already stated,
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The apparatus may have a large number of coordinates, but it will be sufficient to consider 
one of these, y, representing, for example, a pointer from whose points one can read the 
result of the measurement. Initially the apparatus is in a fairly well-defined state represented 
by a wave packet  The initial wave function of the combined system is then

 
(2.1)

We then assume an interaction between the observed system and the apparatus which lasts 
only for a time Δt. For the purpose of explaining the principles involved, it will be sufficient 
to consider what is called an impulsive measurement, i.e. one in which the interaction is 
so strong that throughout the period in which it works, the changes in the observed system 
and the observing apparatus that would occur independently of the interaction may be 
neglected.

The interaction Hamiltonian may be chosen as

 
(2.2)

where λ is a suitable constant. Since this is the same as the total Hamiltonian during this 
period, we can easily solve Schrödinger’s equation,

 
(2.3)

to obtain for the wave function after an interval Δt,

 
(2.4)

If the interaction is chosen so that

 (2.5)

where ΔOn is the change of On for successive values of n, then it follows that the wave 
packets multiplying different ψn(x) will not overlap. To each  there will 
correspond a wave function Cnψn(x).

If we now observe this system with the aid of a second piece of apparatus, then in 
accordance with the postulates that have been described earlier, the latter will register the 
value of y. But it will now have to be in one of the packets, while ψn(x) will then represent 
the corresponding state of the original quantum system. In effect the total wave function 
has ‘collapsed’ from the original linear combination of products to a particular product 

 The probability that this happens can be shown to be |Cn|
2 exactly as it was 

when we had only one measuring apparatus.
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In a ‘naive’ view of this process, one could readily say that this collapse represented 

merely an improvement of our knowledge of the state of the system which resulted from its 
being measured by the second apparatus. Indeed in the application of classical probability 
in physics such ‘collapses’ are quite common. Thus before one has observed a specified 
ensemble, the probability of a certain result n may be Pn. When one observes the result s, 
the probability suddenly collapses from Pn to δns.

But this interpretation is not valid here because in the classical situation we have a linear 
combination of probabilities of each of the results, whereas quantum mechanically we have 
a linear combination of wave functions, while the probability depends quadratically on 
these wave functions. Before the second measuring apparatus has functioned, we therefore 
cannot say that the system is definitely in one of the n states with probability |Cn|

2. For, a 
whole range of subtle physical properties exist which depend on the linear combination 
of wave functions. Thus although the wave packets corresponding to different values of n 
do not overlap, they could, in principle, be made to do so once again by means of further 
interactions. For example, one could introduce a suitable term in the Hamiltonian that 
brought such an overlap about. Moreover one could have subtle observables corresponding 
to operators that couple the combined states of both systems and the mean values of these 
would depend on the existence of linear combinations of the kind we have discussed above. 
(This point is discussed in some detail in Bohm [9].) All of this means that such linear 
combinations have an ontological significance and do not merely describe our knowledge 
of the probabilities of possible values of n which could be the result of this measurement.

Actually a similar problem was present even when we had only one piece of apparatus. 
But this is not generally felt to be disturbing because of the tacit assumption that the 
quantum of action that connects the observed system and the observing apparatus could 
readily introduce significant physical changes in a microsystem such as an atom (along 
the general lines described in connection with the Heisenberg microscope experiment). 
However, we are now led to the conclusion that observation could also introduce significant 
changes of this kind in a macrosystem which includes the first piece of apparatus. Or, to put 
it differently, we may readily accept the notion that in an observation, the quantum state of 
a microsystem undergoes a real change when the wave function ‘collapses’ from a linear 
combination Ψ=∑Cnψn(x) down to one of the eigenfunctions ψs(x). It is not clear however 
what it means to say that there is a sim-ilar real change in a macrosystem when the wave 
function collapses from  to a single state .

This difficulty arises in essence because von Neumann introduced the basically 
ontological notion that the wave function represents a quantum state that somehow ‘stands 
on its own’ (although, of course, in interaction with the classical level). Bohr avoids this 
problem by never speaking of a quantum object that could stand on its own, but rather by 
speaking only of a phenomenon which is an unanalysable whole. The question of interaction 
between a quantum level and a classical level thus cannot arise. Therefore, in this sense, he 
is more consistent than von Neumann.

At first sight one might be inclined to regard these questions as not very important. 
For after all the cut is only an abstraction and one can see that the statistical results do 
not depend on where it is placed. However, in so far as von Neumann effectively gave the 
quantum state a certain ontological significance, the net result was to produce a confused 
and unsatisfactory ontology. This ontology is such as to imply that the collapse of the wave 
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function must also have an ontological significance (whereas for Bohr it merely represents 
a feature of the quantum algorithm which arises in the treatment of a new experiment). To 
show the extent of this difficulty, one could, for example, introduce a third apparatus that 
would measure a system that consisted of the observed object and the first two pieces of 
apparatus. For this situation the collapse would take place between the second and third 
piece of apparatus. One could go on with this sort of sequence indefinitely to include, for 
example, a computer recording of the results on a disc. In this case the collapse would take 
place when the disc was read, perhaps even a year or so later. (In which case the whole 
system would be in a certain quantum state represented by a linear combination of wave 
functions over this whole period of time.) And, as von Neumann himself pointed out, one 
could even include parts of the human brain within the total quantum system, so that the 
collapse could be brought about as a function of the brain.

It is evident that this whole situation is unsatisfactory because the onto-logical process 
of collapse is itself highly ambiguous. Perhaps Bohr’s rather more limited ambiguity may 
seem preferable to von Neumann’s indefinitely proliferating ambiguity.

Wigner has carried this argument further and has suggested that the above ambiguity 
of the collapse can be removed by assuming that this process is definitely a consequence 
of the interaction of matter and mind [10]. Thus he is, in effect, placing the cut between 
these two and implying that mind is not limited by quantum theory. (Pauli has also felt for 
different reasons that mind plays a key role in this context [11].)

We can see several difficulties in the attempt to bring in the direct ac-tion of the mind to 
give an ontological interpretation of the current physical laws of the quantum theory. Thus 
in a laboratory, it is hard to believe that the human mind is actually significantly affecting 
the results of the functioning of the instruments (which may, as we have already pointed 
out, be recorded on a computer that is not even examined for a long time). Moreover 
quantum theory is currently applied to cosmology, and it is difficult to believe that the 
evolution of the universe before the appearance of human beings depended fundamentally 
on the human mind (e.g. to make its wave function ‘collapse’ in an appropriate way). 
Of course one could avoid this difficulty by assuming a universal mind. But if we know 
little about the human mind, we know a great deal less about the universal mind. Such an 
assumption replaces one mystery by an even greater one.

One may ask why physicists have felt the need to bring in mind in their attempts to 
make sense of the quantum theory. Such a need is, indeed, implied in the work of those 
following along the lines of von Neumann. These want to say that the wave function has 
an ontological significance, i.e. as representing the quantum state, and at the same time to 
assume that it is a complete description of reality. However, as we have already pointed 
out, Bohr has claimed (apparently with greater consistency) that any ontology whatsoever 
is ruled out by the very nature of reality as revealed throughout the quantum theory. This 
would suggest that it would be better to adopt Bohr’s point of view.
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2.5 Are Bohr’s conclusions inevitable?

But does the fact that the quantum theory has been applied so successfully lead inevitably 
to Bohr’s conclusion concerning the nature of reality? Clearly it does not. For as we have 
already explained, it involves certain assumptions about real physical processes. In order 
to examine these assumptions properly, let us repeat them. Firstly the quantum of action is 
taken to be indivisible and secondly it is assumed to be unpredictable and uncontrollable. 
From this, Bohr draws the conclusion that the state of being is inherently ambiguous at the 
quantum level of accuracy.

It is essential to look more carefully at this conclusion which is based, in part, on a tacit 
identification of determinism with predictability and controllability. This identification is 
clearly characteristic of positivist philosophy. In this philosophy, science is not regarded 
as dealing with what is, so that concepts cannot be regarded as reflecting reality. Rather 
they have to be defined empirically, i.e. in relation to their manifestation in observation and 
experience. In such a philosophy it follows that determinism can have no meaning beyond 
predictability and controllability. 

Since the quantum theory was first formulated, the relationship of determinism to 
predictability and controllability has been clarified by the discovery that a very general 
class of deterministic systems (i.e. those having unstable and chaotic motions) are neither 
predictable nor controllable, as has been discussed in some detail by Penrose [12]. Thus the 
identification of determinism with predictability and controllability has been invalidated. 
It follows that the mere uncontrollability and unpredictability of quantum phenomena 
does not necessarily imply that there can be no quantum world, which could in itself be 
determinate.

What about the indivisibility and unanalysability of the quantum of action? It is true that 
in some sense, at least, the quantum of action is neither divisible nor analysable at the level 
of the phenomena. Consider, for example, an atom emitting a quantum of light. We have 
two distinct states, (a) The atom in an excited state and no quantum present. And (b) the 
atom in its ground state and a quantum present.

The process of going from (a) to (b) is said to be a ‘quantum jump’ in the sense that 
there are no phenomena which correspond to any state in between. Of course, we may try 
to find such phenomena by observing the system in its process of transition. But as implied 
in Bohr’s views, this would constitute an entirely different experimental arrangement that 
would be incompatible with the process of transition that we are considering.

From this however it does not follow that there is no more complete description perhaps 
at a deeper more complex level in which this process can be treated as continuous and 
analysable. One can indeed easily conceive of such a process in general terms. For example, 
the same kind of non-linear equations that give rise to unstable and chaotic motions can also 
lead to what are called stable limit cycles in which the system stays near a certain state of 
motion. But more generally this stability may be limited so that the system can ‘jump’ from 
one such limit cycle to another, in a movement so fast and unstable that it could neither be 
predicted, controlled nor followed. Thus it would not appear in the phenomena. Indeed as 
we shall see in chapter 5, our interpretation of the quantum theory implies just such ‘jumps’ 
between what are in essence stable limit cycles. In this way one may explain processes that 
in the quantum theory are called “unpredictable, uncontrollable and indivisible quantum 
transitions between discrete orbits”.
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But as we recall, Bohr’s entire position depended crucially on his assumptions of the 
nature of the quantum of action. Therefore from what we have said above it follows that 
there is no inherent necessity to adopt Bohr’s position, and that there is nothing in Bohr’s 
analysis that could rule out a quantum ontology. But of course, this latter would require the 
introduction of new concepts beyond that of the wave function and the quantum state. We 
would have to begin by simply assuming the new concepts and defining them through their 
participation in the laws of physics.

In doing this we have to differ from Bohr who at least tacitly required that all basic 
physical concepts be defined by referring them to specific phenomena in which they are 
measured. In contrast we derive the possible phenomena as forms on the overall structure 
of concepts and their relationships. An example of this is given by Einstein’s derivation of 
particles obeying the usual laws of motion, either as singularities, or as very strong static 
pulses in a continuous non-linear field. The test of the theory is then to see whether the 
derived phenomena, not only explain the general form of the observed phenomena, but also 
their detailed relationships. In such an approach, the epistemology follows naturally from 
the ontology (just as it does in classical physics).

At this point, however, we have to return to von Neumann who, as we have already 
pointed out, believed that the wave function contained the most complete possible 
description of reality, thus implying that there was no way to do what we have suggested 
above. Von Neumann based this belief on his theorem to which we have alluded earlier, 
that claimed to show that a more detailed description would not be compatible with the 
laws of the quantum theory [13]. This proof was however questioned by Bohm [14] in 
1952 and later by Bell [15]. A number of those who followed along von Neumann’s lines, 
refined his arguments in several ways, but these refinements were also shown by Bell to 
make tacit assumptions about ontological theories that are too limited. (All of this will be 
discussed in more detail in chapter 7.)

We conclude that there are no sound reasons against seeking an onto-logical interpretation 
of the quantum theory. This book presents in essence the first complete ontological 
interpretation that has been proposed. As indicated in the introduction, there have been 
several other ontological interpretations since then. In chapter 14 we shall discuss these 
and compare and contrast them with the interpretation given in this book.
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 Chapter 3  
Causal interpretation of the one-body system

In this chapter we develop the basic principles of our ontological interpretation of the 
quantum theory in the context of a one-body system (while the many-body system will be 
treated in the next chapter).

3.1 The main points of the causal interpretation

Let us begin by considering the standard WKB approximation for the classical limit in 
quantum mechanics. To do this we write the wave function in polar form ψ=Rexp(iS/ħ). We 
insert this form into Schrödinger’s equation

 
(3.1)

where V is the classical potential. This gives rise to two equations

 
(3.2)

and

 
(3.3)

In order to obtain the WKB approximation, we note that in the classical limit in which there 
is a wave packet of width much greater than the wave length, λ, the term  
will be very small compared with the term  We therefore neglect it and obtain 

 

(3.4)

In the above we have written S=Sc to indicate that we are dealing with the classical 
Hamilton-Jacobi equation representing a particle with momentum

 (3.5)

which moves normal to the wave front Sc=const. It follows then that equation (3.2) can be 
regarded as a conservation equation for the probability in an ensemble of such particles, all 
moving normal to the same wave front with a probability density P=R2.

All of this may seem familiar but nevertheless there is something very noteworthy here. 
For though we have started with the quantum theory with all its ambiguities about the nature 
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of a quantum system, we have somehow ‘slipped over’ into what is in essence the ordinary 
classical ontology. It seems natural at this point to ask whether this kind of ontology could 
not be extended to the quantum domain. Thus we note the quantum equation (3.2) differs 
from the classical equation (3.4) only by the term  which evidently can 
be regarded as playing the role of an additional potential in what we may call the quantum 
Hamilton-Jacobi equation. To bring this out we shall define what we call the quantum 
potential:

 
(3.6)

The quantum Hamilton-Jacobi equation then becomes

 
(3.7)

The equation (3.3) still expresses the conservation of probability, but for an ensemble of 
particles which satisfies (3.7) rather than (3.4).

Let us now discuss this ontology in a more systematic way. Its key points are:

1.  The electron actually is a particle with a well-defined position x(t) which varies 
continuously and is causally determined.

2.   This particle is never separate from a new type of quantum field that fundamentally 
affects it. This field is given by R and S or alternatively by ψ=Rexp(iS/ħ). ψ then 
satisfies Schrödinger’s equation (rather than, for example, Maxwell’s equation), so 
that it too changes continuously and is causally determined.

3. The particle has an equation of motion 

 
(3.8)

This means that the forces acting on it are not only the classical force,  but 
also the quantum force,  

4.  The particle momentum is restricted to  Since the quantum field ψ is single 
valued it follows (as can easily be shown) that

 
(3.9)

This resembles the old Bohr-Sommerfeld condition, but differs from the latter in 
which  where Sc is the solution of the classical Hamilton-Jacobi equation 
(3.4) rather than the quantum Hamilton-Jacobi equation (3.7).

5.  In a statistical ensemble of particles, selected so that all have the same quantum 
field ψ, the probability density is P=R2. We shall discuss the significance of this in 
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more detail in a later section, but we can now note that if P=R2 holds initially, then 
the conservation equation (3.3) guarantees that it will hold for all time.

Given that the particle is always accompanied by its quantum field ψ, we may say that the 
combined system of particle plus field is causally determined. (The statistics merely apply 
to an ensemble of causally determined trajectories.) For this reason the above proposals 
have been called the ‘causal interpretation’ in some of the earlier papers (though it must be 
emphasised that the basic ontological point of view given here can be extended, as we shall 
indeed do in chapter 9, to a more general stochastic context).

Finally it should be pointed out that unlike what happens with Maxwell’s equations for 
example, the Schrödinger equation for the quantum field does not have sources, nor does 
it have any other way by which the field could be directly affected by the conditions of the 
particles. This of course constitutes an important difference between quantum fields and 
other fields that have thus far been used. As we shall see, however, the quantum theory can 
be understood completely in terms of the assumption that the quantum field has no sources 
or other forms of dependence on the particles. We shall in chapter 14, section 14.6, go into 
what it would mean to have such dependence and we shall see that this would imply that the 
quantum theory is an approximation with a limited domain of validity. In this way, as well 
as in other ways, we will see that our ontological interpretation permits a generalisation of 
the laws of physics going beyond the quantum theory, yet approaching the quantum theory 
as a suitable limit within which physics has thus far been contained. 

3.2 New concepts implied by the ontological interpretation

At first sight it may seem that to consider the electron, for example, as some kind of particle 
that is affected by the quantum field ψ is just a return to older classical ideas. Such a notion 
is however generally felt to have long since been proved to be inadequate in understanding 
quantum theory which possesses so many features that are very different from those of 
classical mechanics. However, closer inspection shows that we are not actually reducing 
quantum mechanics in this way to an explanation in terms of classical ideas. For the 
quantum potential has a number of strikingly new features which do not cohere with what 
is generally accepted as the essential structure of classical physics.

In this connection it is important to note that the form of Newton’s laws alone is not 
enough to determine that the general structure of classical physics shall hold. For example, 
a great deal of work has been done showing that to obtain determinism (which is surely 
an essential feature of classical physics) we require further assumptions on the nature of 
the forces [1]. For example, if infinite particle velocities or signal velocities are allowed, 
it has been demonstrated that determinism may fail. But no one has claimed to have given 
an exhaustive treatment of all the requirements even for determinism alone. Moreover it 
seems reasonable to suppose that other features of classical physics may also depend on 
further (largely tacit) assumptions about the nature of the forces. Indeed as we shall see, 
the new qualitative features of the quantum potential that we have mentioned above are just 
such as to imply the new properties of matter that are revealed by the quantum theory.

The first of these new properties can be seen by noting that the quantum potential is not 
changed when we multiply the field ψ by an arbitrary constant. (This is because ψ appears 
both in the numerator and the denominator of Q.) This means that the effect of the quantum 
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potential is independent of the strength (i.e. the intensity) of the quantum field but depends 
only on its form. By contrast, classical waves, which act mechanically (i.e. to transfer 
energy and momentum, for example, to push a floating object), always produce effects that 
are more or less proportional to the strength of the wave. For example one may consider a 
water wave which causes a cork to bob. The further the cork is from the centre of the wave 
the less it will move. But with the quantum field, it is as if the cork could bob with full 
strength even far from the source of the wave.

Such behaviour would seem strange from the point of view of classical physics. Yet it 
is fairly common at the level of ordinary experience. For example we may consider a ship 
on automatic pilot being guided by radio waves. Here, too, the effect of the radio waves is 
independent of their intensity and depends only on their form. The essential point is that 
the ship is moving with its own energy, and that the form of the radio waves is taken up to 
direct the much greater energy of the ship. We may therefore propose that an electron too 
moves under its own energy, and that the form of the quantum wave directs the energy of 
the electron.

This introduces several new features into the movement. First of all, it means that 
particles moving in empty space under the action of no classical forces need not travel 
uniformly in straight lines. This is a radical departure from classical Newtonian theory. 
Moreover, since the effect of the wave does not necessarily fall off with the distance, even 
remote features of the environment can profoundly affect the movement.

As an example, let us consider the interference experiment. This involves a system 
of two slits. A particle is incident on this system, along with its quantum wave. While 
the particle can only go through one slit or the other, the wave goes through both. On 
the outgoing side of the slit system, the waves interfere to produce a complex quantum 
potential which does not in general fall off with the distance from the slits [2]. This potential 
is shown in figure 3.1. Note the deep ‘valleys’ and broad ‘plateaux’. In the regions where 
the quantum potential changes rapidly there is a strong force on the particle. The particle is 
thus deflected, even though no classical force is acting.

We now consider a statistical ensemble of particles which may be obtained, for example, 
by having electrons ‘boiled out’ of a hot filament in a random way. Each electron has 
its own quantum field, but with the aid of suitable collimators and velocity selectors, we 
choose only those electrons with quantum fields corresponding approximately to waves 
with given direction and wave number that are incident on the slits in the manner described 
above. While all the electrons now have essentially the same form of the quantum field 
and therefore of the quantum potential, they will all approach the slit system from different 
starting points. As will be shown in section 3.4 as well as in chapter 9, for this case we 
may expect an essentially random distribution of such incident electrons. The resulting 
trajectories which are shown in figure 3.2 are then bunched into a series of dense and rare 
regions. These evidently constitute what are commonly called interference fringes.

If, however, just one slit had been open, the quantum field, ψ, would only pass through 
this slit, so that beyond the slit system there would have been a different quantum field 
and therefore a different potential. This would produce a more nearly uniform distribution 
of particles arriving at the screen, rather than a set of fringe-like regions. In this way we 
explain why the opening of a second slit can prevent particles from arriving at points to 
which they would not have come if only one slit had been open. 
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Figure 3.1: Trajectories for two Gaussian slit systems

 
Figure 3.2: Quantum potential for two Gaussian slits
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In this explanation of the quantum properties of the electron, the fact that the quantum 
potential depends only on the form and not on the amplitude of the quantum field is evidently 
of crucial significance. As we have already suggested, although at first sight such behaviour 
seems to be totally outside of our common experience, a little reflection shows that this 
is not so. Effects of this kind are indeed frequently encountered in ordinary experience 
wherever we are dealing with information. Thus in the example of the ship guided by radio 
waves, one may say that these waves carry information about what is in the environment of 
the ship and that this information enters into the movements of the ship through its being 
taken up in the mechanism of the automatic pilot. Similarly we explain the interference 
properties by saying that the quantum field contains information, for example about the 
slits, and that this information is taken up in the movements of the particle. In effect we 
have in this way introduced a concept that is new in the context of physics—a concept that 
we shall call active information. The basic idea of active information is that a form having 
very little energy enters into and directs a much greater energy. The activity of the latter is 
in this way given a form similar to that of the smaller energy.

It is important to distinguish our concept of active information from the more technical 
definition of information commonly adopted in physics in terms of, for example, Shannon’s 
ideas [3] implying that there is a quantitative measure of information that represents 
the way in which the state of a system is uncertain to us (e.g. that we can only specify 
probabilities of various states). It is true that such concepts have been used to calculate 
objective properties of systems in thermodynamics and even black holes etc. [4], but we 
wish to propose here a quite different notion of information that is not essentially related 
to our own knowledge or lack of it. Rather in the case that we are discussing, for example, 
it will be information that is relevant to determining the movement of the electron itself. 
We emphasise again that it is our thesis that this sort of usage of the word information is 
actually encountered in a wide range of areas of experience. What is crucial here is that we 
are calling attention to the literal meaning of the word, i.e. to in-form, which is actively to 
put form into something or to imbue something with form.

As a simple example of what we mean, consider a radio wave whose form carries a signal. 
The sound energy we hear in the radio does not come directly from the radio wave itself 
which is too weak to be detected by our senses. It comes from the power plug or batteries 
which provide an essentially unformed energy that can be given form (i.e. in-formed) by 
the pattern carried by the radio wave. This process is evidently entirely objective and has 
nothing to do with our knowing the details of how this happens. The information in the 
radio wave is potentially active everywhere, but it is actually active, only where and when 
it can give form to the electrical energy which, in this case, is in the radio.

A more developed example of such a situation is given by considering the computer. The 
information content in a silicon chip can determine a whole range of potential activities 
which may be actualised by giving form to the electrical energy coming from a power 
source. Which of these possibilities will be actualised in a given case depends on a wider 
context and the responses of a computer operator.

Although the above examples do indicate what we mean by the objective significance 
of active information, nevertheless they still depend on structures (like the radio set and the 
computer) which were originally designed and put together by human beings and so may 
be felt to retain a trace of subjectivity. An example that does not involve structures set up by 
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human beings is the function of the DNA molecule. The DNA is said to constitute a code, that 
is to say, a language. The form of the DNA molecule is considered as information content 
for this code, while the ‘meaning’ is expressed in terms of various processes; e.g. those 
involving RNA molecules, which ‘read’ the DNA code, and carry out the protein-making 
activities that are implied by particular sections of the DNA molecule. The comparison to 
our notion of objective and active information is very close. Thus, in the process of cell 
growth it is only the form of the DNA molecule that counts, while the energy is supplied by 
the rest of the cell (and indeed ultimately by the environment as a whole). Moreover, at any 
moment, only a part of the DNA molecule is being ‘read’ and giving rise to activity. The 
rest is potentially active and may become actually active according to the total situation in 
which the cell finds itself.

While we are bringing out above the objective aspects of information, we do not intend 
to deny its importance in subjective human experience. However, we wish to point out that 
even in this domain, the notion of active information still applies. A simple example is to 
be found in reading a map. In this activity we apprehend the information content of this 
map through our own mental energy. And by a whole set of virtual or potential activities 
in the imagination, we can see the possible significance of this map. Thus the information 
is immediately active in arousing the imagination, but this activity is still evidently inward 
within the brain and nervous system. If we are actually travelling in the territory itself then, 
at any moment, some particular aspect may be further actualised through our physical 
energies, acting in that territory (according to a broader context, including what the human 
being knows and what he is perceiving at that moment).

We therefore emphasise once again that even the information held by human beings 
is, in general, active rather than passive, not merely reflecting something outside itself 
but actually, or at least potentially, capable of participating in the thing to which it refers. 
Passive information may in fact be regarded as a limiting case in which we abstract from 
the activity of information. This is essentially the kind of information that is currently used 
in information theory, e.g. as used by Shannon. The puzzle in this approach is that of how 
information that is merely passive within us is able to determine actual objective processes 
outside of us. We suggest that passive information is rather like a map reflecting something 
of these processes which can guide us to organise them conveniently for our use, e.g. by 
means of algorithms that enable us to calculate entropy and other such properties.

If the notion of active information applies both objectively and subjectively, it may 
well be that all information is at least potentially active and that complete passivity is 
never more than an abstraction valid in certain limited circumstances. In this context our 
proposals to use the concept of active information at the quantum level does not seem to 
be unnatural.

To show how these ideas work out in more detail, we can go once again into the 
example that we gave earlier of the electron in an interference experiment. We could say 
that this particle has the ability to do work. This ability is released by active information 
in the quantum field, which is measured by the quantum potential. As the particle reaches 
certain points in front of the slits, it is ‘in-formed’ to accelerate or decelerate accordingly, 
sometimes quite violently.

Although equation (3.8) may look like a classical law implying pushing or pulling by the 
quantum potential, this would not be understandable because a very weak field can produce 
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the full effect which depends only on the form of the wave. We therefore emphasise that 
the quantum field is not pushing or pulling the particle mechanically, any more than the 
radio wave is pushing or pulling the ship that it guides. So the ability to do work does not 
originate in the quantum field, but must have some other origin (a suggestion which we 
shall discuss presently).

The fact that the particle is moving under its own energy, but being guided by the 
information in the quantum field, suggests that an electron or any other elementary particle 
has a complex and subtle inner structure (e.g. perhaps even comparable to that of a radio). 
This notion goes against the whole tradition of modern physics which assumes that as we 
analyse matter into smaller and smaller parts its behaviour always grows more and more 
elementary. But our interpretation of the quantum theory indicates that nature is far more 
subtle and strange than previously thought. However, this sort of inner complexity is perhaps 
not as implausible as may appear at first sight. For example, a large crowd of people can be 
treated by simple statistical laws, whereas individually, their behaviour is immensely more 
subtle and complex. Similarly, large masses of matter reduce approximately to a simple 
Newtonian behaviour, whereas the molecules and atoms out of which matter is built have 
a more complex inner structure.

To make this suggestion yet more plausible, we note that between the shortest distances 
now measurable in physics (of the order of 10−16 cm) and the shortest distances in which 
current notions of space-time probably have meaning which is of the order of 10–33 cm, 
there is a vast range of scale in which an immense amount of yet undiscovered structure 
could be contained. Indeed, this range of scale is comparable to that which exists between 
our own size and that of the elementary particle. Moreover, since the vacuum is generally 
regarded as full (see Wheeler [5] and Hiley [6] for example) with an immense energy of 
fluctuation, revealed for example in the Casimir effect [7], it may be further suggested that 
ultimately the energy of this particle comes from this source. (Some of it may also come 
from the rest energy of the particle.)

It should be added here that (as happens with the radio wave) the quantum information 
field may also have some energy. However, as has been made clear in the many analogies 
given here, this must be negligible in comparison to the energy of the particle which it 
guides. (Though perhaps these might be detectable in new kinds of experiments of the sort 
suggested in chapter 13, section 13.6 and chapter 14, section 14.6, which would go beyond 
the domain of current quantum theory.)

A very important further implication of the notion of active information is that in a 
certain sense an entire experiment has to be regarded as a single undivided whole. This 
arises because the motion of the particles can be strongly affected by distant features 
of the environment such as the slits. On the other hand, in the corresponding classical 
experiment the slit system can be ignored once the particle has passed through it. And as 
has been pointed out, a different slit system would produce a different quantum potential 
which would affect the motion of the particles in a different way. Therefore the motion 
of the particles cannot properly be discussed in abstraction from the total experimental 
arrangement. This is reminiscent of Bohr’s notion of wholeness, but it differs in that the 
entire process is open to our ‘conceptual gaze’ and can therefore be analysed in thought, 
even if it cannot be divided in actuality without radically changing its nature.
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3.3 Comparison with de Broglie’s idea of a double solution

The idea of a ‘pilot wave’ that guides the movement of the electron was first suggested 
by de Broglie [8] in 1927, but only in connection with the one-body system. De Broglie 
presented this idea at the 1927 Solvay Congress where it was strongly criticised by Pauli 
[9]. His most important criticism was that, in a two-body scattering process, the model 
could not be applied coherently. In consequence de Broglie abandoned his suggestion. The 
idea of a pilot wave was proposed again in 1952 by Bohm [10] in which an interpretation 
for the many-body system was given. This latter made it possible to answer Pauli’s criticism 
and indeed opened the way to a coherent interpretation including a theory of measurement 
which was applicable over a wide range of quantum phenomena. As a result de Broglie [11] 
took up his original ideas again and continued to develop them in various ways.

An important part of de Broglie’s early approach was to try to explain the assumptions 
underlying the pilot wave interpretation in terms of what he called the theory of the ‘double 
solution’. This was based on the assumption of a non-linear field equation which, in the 
linear approximation, approached the ordinary Schrödinger equation. However, for large 
amplitude, the non-linearity became important. He suggested that there would exist solutions 
which would correspond to a stable singularity or pulse when the amplitude was high 
and would gradually shade off into solutions of the linear Schrödinger equation at larger 
distances. The pulse would evidently correspond to a particle. He then gave arguments 
aimed at showing that in order to obtain continuity of the field, the movement of this pulse 
would have to be determined by the relation  where S is the phase of the linear 
part of wave at the location of the pulse.

However, a closer analysis shows that this is actually only a necessary condition and not 
a sufficient one. Indeed we can see that it cannot be sufficient by considering the fact that 
energy and momentum conservation are necessary consequences of the kinds of equations 
discussed by de Broglie. The momentum in the singularity will be very large in comparison 
with that available in the extremely weak pilot wave. Therefore it will not be possible to 
obtain solutions of the field equations which would lead to the very great accelerations that 
are in general implied by the guidance relation (e.g. as seen in our discussion of the two 
slit interference experiment). Rather, we have seen that to obtain a powerful effect from a 
very weak field we need something like our concept of active information. For the phase, 
S, clearly depends only on the form of the field and not on the amplitude. In our approach, 
it is this form which ‘in-forms’ the energy of the self-movement of the particle. Therefore 
the key difference of our idea from that of de Broglie is that we do not attempt to explain 
the guidance relation in a simple mechanical way as an effect of non-linear propagation of 
fields. Instead we are appealing to the notion that a particle has a rich and complex inner 
structure which can respond to information and direct its self-motion accordingly. 

In addition it should be noted that the concept of the double solution has never yet been 
extended to the many-body system, nor is there any idea available as to how this is to be 
done. On the other hand, as will be seen in later chapters, the notion of active information 
can quite naturally be extended to the many-body system. For these reasons as well as for 
those given earlier it seems that the general idea of something like active information is 
strongly indicated as needed for an ontological explanation of quantum theory.
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Returning to a consideration of the guidance relationship, we emphasise that this by itself 
is not enough to determine the behaviour of the particle. It is necessary also to have some 
equation that determines the changes of S. In our case this is, of course, the Schrödinger 
equation. And as we have seen, it follows that the equation of motion is given by the modi-
fied form of Newton’s law (3.8) which contains the quantum potential.

If we start from the guidance relations, it is then implied that the quantum potential, Q, 
will contribute to the acceleration in the way described above. However, we emphasise 
once again that the significance of this potential is not that it represents the mechanical 
effects of attraction and repulsion of the particle by various features of its environment, e.g. 
the slit system. Rather its significance is that it represents a contribution to the acceleration 
of the particle in its self-movement. But it must also be stressed that if the field satisfies 
an equation other than that of Schrödinger, then there will be a different formula for this 
contribution. (For example as we shall see in chapters 10 and 12, this actually happens in 
the case of the Pauli equation and the Dirac equation.)

3.4 On the role of probability in the quantum theory

Thus far we have mainly been considering the individual particle. We shall now discuss 
in more detail how the concept of probability is used in the theory, in a suitable statistical 
ensemble.

Let us first note that the function P=R2 has two interpretations, one through the quan-
tum potential and the other through the probability density. It is our proposal that the more 
fundamental meaning of R (and therefore indirectly of P) is that it determines the quantum 
potential. In contradistinction to the usual interpretation its meaning as a probability is only 
secondary. Its significance in this respect is that it gives the probability for the particle to 
be at a certain position. Here we differ again from the usual epistemological interpretations 
which suppose it is the probability of finding a particle there in a suitable measurement. 
Indeed as will be brought out in more detail in chapter 6, the measurement process itself 
has to be interpreted as a particular application of the theory. This theory is formulated 
basically in terms of what Bell [12] has called ‘beables’ rather than of ‘observables’. These 
beables are assumed to have a reality that is independent of being observed or known in 
any other way. The observables therefore do not have a fundamental significance in our 
theory but rather are treated as statistical functions of the beables that are involved in what 
is currently called a measurement.

The above implies that |ψ|2 has no necessary relationship to probability. That is to say, 
the two concepts are basically independent. It will be shown in chapter 9, however, that 
under typical chaotic conditions that prevail in most situations an arbitrary probability 
distribution, P, will approach and remain equal to |ψ|2, the latter being an equilibrium dis-
tribution. The relationship between P and |ψ|2 is in this way seen to be contingent. We will 
indeed discuss, for example, a possibility that P≠|ψ|2 under certain new kinds of conditions 
which could in principle ultimately be investigated, even though P would be equal to |ψ|2 
in all those situations that we have been thus far able to investigate. Moreover a stochastic 
model of the particle trajectories will also be given in chapter 9, which gives an additional 
possible explanation of why P approaches |ψ|2.
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To illustrate these ideas let us consider a statistical ensemble of particles in which the 
experimental situation is so arranged that all the particles have the same wave function. In 
the usual interpretation, this situation is called a pure state. (We discuss the mixed state in 
chapter 9.) As an example, we may consider our previous discussion of the two slit experi-
ment in which electrons boil out of a hot filament and are then suitably selected to have the 
same quantum field ψ corresponding approximately to a plane wave with a definite wave 
vector k incident on the slits. This is the process that Dirac [13] calls the ‘preparation’ of the 
measurement (and for Bohr [14] it is, of course, part of the experimental conditions).

Suppose then that electrons enter the system one-by-one. Each one will have its own 
quantum field, but the forms of all these fields will be essentially the same. However, the 
particles themselves will have a chaotically varying distribution of initial positions with 
a probability P=|ψ|2. It should be added that, as we shall show in chapter 9, there is no 
way to control or predict these conditions even though the motion is determinate in each 
individual case.

In the experiment under discussion, our ensemble of particles with the same quantum 
field, ψ, will pass through the slit system to be detected at the screen. Each individual 
result is determined by the initial conditions of the corresponding particle. As we have 
already pointed out, such a particle must pass through one slit or the other, but its motion 
is determined by active information coming from quantum fields that have passed through 
both slits. Therefore particles can be kept away from certain points at which they could 
have arrived if only one of the slits had been open. As the results accumulate, one will then 
obtain the bunching of particles that produces the interference pattern in the way that has 
been described.

To sum up then, the idea of probability that we have introduced here is clearly not 
essentially different from that used in classical statistical ensembles. Thus in no sense is 
probability being regarded as a fundamental concept. Rather the properties of the indi-
vidual system are taken as primary, and probabilities are interpreted in terms of these. The 
main new quantum properties of matter follow not from the use of the probability theory, 
but rather from the qualitatively new features of the quantum potential which, for example, 
imply a novel quantum wholeness such that the behaviour of a particle may depend cru-
cially on distant features of the environment.

3.5 Stationary states

We shall now go on to show how our interpretation can be applied to a number of specific 
examples which help to bring out the meaning of this interpretation. We shall begin by 
considering stationary states. In a stationary state the wave function oscillates harmonically 
with the time. It can be written as

                                      ψ(x, t)=ψ0(x) exp[−iEt/ħ]. (3.10)

The quantum Hamilton-Jacobi equation (3.8) becomes

 (3.11)
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Let us first consider an atom in an s-state. In this case the wave function ψ0(x) is real so that 
one can write S=0. This implies that

                                               p=0 and E=V+Q. (3.12)

The above result means that in an s-state the electron is at rest. This may seem surprising, 
since classical physics leads us to expect a condition of dynamical equilibrium for a state of 
definite energy as an explanation of why the potential does not cause the particle to fall into 
the nucleus. However, equation (3.12) shows that in terms of our interpretation, the stability 
of this state arises from the fact that the quantum potential cancels out the space variation 
of the classical potential leaving a constant energy E that is independent of position.

It must be remembered, however, that we are interpreting the quantum forces in terms of 
the new notion of active information that we have introduced in the previous chapter. This 
information ‘informs’ the particle in its self-motion to contribute an acceleration  
which, in a stationary state, balances the classical acceleration  The particle is 
therefore able to remain in a fixed position and the reason it does not fall into the nucleus is 
that this is prevented by the outward acceleration due to the quantum potential.

There is no state more closely bound to the nucleus than the lowest state. Indeed if we 
try to find one, we would discover that the repulsive effect of the quantum potential would 
be much stronger than the attractive effect of the classical potential. This explanation must 
be contrasted with the one usually given which attributes the stability of the lowest state to 
a kind of ‘pressure’ due to the random motion that is said to be implied by the uncertainty 
principle [15].

More generally however, in a non-stationary state, the balance between  and  
will not hold. Moreover if this system is coupled to one with which it can exchange energy, 
then a transition is possible from one stationary state to another. We shall discuss this 
process in chapter 5 where it will be seen that the probability that the particle will arrive at 
the point x is |ψ(x)|2. In this way we understand how such a distribution of static particles 
can arise.

Nevertheless one may ask how the stationary values of x are related to what is implied by 
the usual interpretation for this case, i.e. the probability of obtaining a certain momentum 
p in a measurement is |Cp|

2 where Cp is the Fourier coefficient of the wave function. It will 
be shown, in fact, in chapter 6 dealing with the theory of measurement according to our 
interpretation, that if we measure the momentum of the particle in a stationary state, the 
resulting disturbance will change the quantum field and cause the particle to be accelerated 
by the quantum potential in a way that depends on its initial location. The probability of 
obtaining a net momentum p in this process will be shown to be just |Cp|

2. This means that 
for this case we have reproduced the results of the usual interpretation, but that we have 
given a different account of the meaning of these results. In chapter 6 we shall go into this 
question in more detail and show that our account of this process is consistent.

Moreover if one is not aesthetically satisfied with this picture of a static electron in a 
stationary state, one can go to the stochastic model given in chapter 9. In this model the 
particle will have a random motion round an average  and the net probability 
density in this random motion comes out as P=|ψ(x)|2.
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In principle all stationary state wave functions can be taken as real, so that the above 
considerations apply. However, if the energy levels are degenerate, it is possible to form 
stationary states that are complex linear combinations of these real wave functions. As an 
example, let us consider the three p-states. In their real forms, the basic wave functions are

ψ1=x f(r)/r
ψ2=y f(r)/r
ψ3=z f(r)/r,

(3.13)

where r is the radial distance from the nucleus. From these we can form linear combinations 
having a definite angular momentum in any direction which may with sufficient generality 
be taken as that of z. The three corresponding wave functions are then

ψ+=(x+iy) f(r)/r
ψ0=z f(r)/r

ψ−=(x−iy) f(r)/r,
(3.14)

which represent, respectively, angular momentum projections in the z direction of +ħ, 0 
and −ħ. The phases of these wave functions are respectively

 

(3.15)

where  is the polar angle round the z-axis. The particle momenta for these phases are

 

(3.16)

where ρ is the radius in cylindrical polar coordinates around the z-axis.
Clearly the particle with z-component of angular momentum zero is at rest. But p+ and 

p− correspond to motion in a circle around the z-axis at an arbitrary value of z, with angular 
momentum ±ħ. (See figure 3.3.) The velocity becomes infinite at ρ=0, but as is well known 
the wave function vanishes on this line so that there is no probability that a particle will 
be there.

The energy is 
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Figure 3.3: Possible particle orbit for the p+ state

with

 

 

so that

 
(3.17)

In this case part of the energy ħ2/ρ2 is kinetic, while the quantum potential balances V(r)+ħ2/
ρ2 only in the directions of z and ρ.

We see then that by forming complex combinations of real stationary state wave 
functions, we obtain situations in which some of the energy is kinetic. In the case of a 
free particle, the two complex wave functions corresponding to an energy E=h2k2/2m are 
exp(ik·x) and exp(−ik·x). These correspond respectively to particle momenta p=hk and 
p=−hk. This is an extreme case in which, as one can readily verify, the quantum potential 
is zero and this is why all the energy is kinetic. To understand our interpretation properly it 
is necessary therefore to keep in mind that a part of what is thought of in classical intuition 
as kinetic energy is now treated as an energy associated with the quantum potential.

3.6 Non-stationary states

The general wave function is built out of a linear combination of stationary state wave 
functions and represents a situation in which the quantum potential is changing with time. 
A typical case of such a situation is represented by a wave packet that moves with a certain 
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mean velocity. Inside this wave packet we consider an ensemble of possible positions of 
the particle. As an example, let us take the special case of Gaussian wave packet, initially 
centred at x0=0 and with mean momentum zero.

 
(3.18)

Each wave oscillates with frequency ω=ħk2/2m and so as a function of time, we have

 
(3.19)

The evaluation of this integral yields

 

(3.20)

The above represents a wave packet which remains centred at the origin but which spreads 
so that for large values of t, its width is

 

 

This means that eventually the width of the packet corresponds to the spread of distances 
covered by the particles which is in turn determined by the spread of velocities which is 
equal to Δυ. What the usual picture gives for this process is that there actually is an initial 
spread of velocities Δυ=Δp/m which is implied by the uncertainty principle Δp~ħ/Δx. But 
in the causal interpretation, the velocity is always well defined at each point. Its value is

 

 

where  is the phase of the wave function. Since

 
(3.21)
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we obtain

 

 

It is clear then that the particles are accelerated from zero velocity, and for large values 
of t the velocity is υ=x/t. This acceleration is evidently a result of the quantum potential 
which is

 
(3.22)

Evidently the quantum potential decreases as the wave packet spreads, falling eventually 
to zero.

The picture is then that as the wave packet spreads, the particle gains kinetic energy, the 
amount depending upon where it was initially in the packet. This clearly denies the com-
mon idea to which we have already alluded that the spread of velocities was there from the 
start and given by the uncertainty principle. A similar situation was seen to arise in the case 
of stationary states with real wave functions, where likewise we had a zero velocity. The 
measurement process disturbed the system so that the energy represented by the quantum 
potential was turned into kinetic energy. However, the difference is that, in the case of the 
wave packet, we do not need an external disturbance such as that produced by a measure-
ment process to initiate the acceleration of the particles.

3.7 Are energy and momentum conserved in non-stationary states?

It is clear that in a non-stationary state, the amplitude of the wave function R, and therefore 
the quantum potential associated with it, will be a function of time. This evidently means 
that the energy of the particle, ∂S/∂t, will not be conserved in detail. It will however be 
conserved on the average as can be seen by considering

 

 

Putting ψ=Rexp(iS/ħ) in the above, we readily obtain

 

 

This is just the ordinary expression for the mean value of the Hamiltonian as given in 
the usual interpretation. And, as is well known, this is conserved as a consequence of 
Schrödinger’s equation. Moreover this is enough to ensure that there will be conservation 
of energy in the classical limit where we neglect Heisenberg’s uncertainty principle. 
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Even in the usual interpretation, energy need not be conserved in detail when there is a 
wave packet. Rather the correct statement would be that energy is conserved only within 
the range defined by Heisenberg’s principle, i.e. only within the mean width, ΔE, of the 
wave packet. A similar situation can be found in what are called virtual states in the usual 
interpretation. These do not conserve the original energy, but in compensation they can last 
only for a time h/ΔE where ΔE is the extent of non-conservation [16].

In our interpretation, however, the particle energy is definite but constantly changing. 
Thus in the simple case of the Gaussian packet, we saw that the energy of the particle 
changes monotonically. More generally, however, the motion will be more complex and 
the particle may be expected to ‘jiggle’ in an irregular way. But whatever the motion, the 
range of variation in the energy will generally be of the order of the mean width, ΔE, of the 
packet. To see that this is so, let us write for the wave packet

 

 

where E0 is the mean energy of the packet. Then

 

 

It is clear that on the average the time dependent part of ∂S/∂t will be of the order of ΔE.
Our picture is then that each individual particle moves with an energy close to the aver-

age E0, and with changes of energy of the order of ΔE (which may in general give rise to a 
complicated pattern of motion).

A similar treatment can be given for momentum, and one will find that a wave packet, 
even for a free particle, undergoes corresponding changes of momentum as well. However, 
on the whole these remain more or less within the limits set by Heisenberg’s principle.

Where does this fluctuating energy and momentum come from? Evidently it can be 
attributed to the quantum potential which is now a function of time. But as we have seen 
earlier the quantum potential is implied by the guidance condition,  which, we 
recall, is to be interpreted as being brought about by the activity of the information in the 
quantum field. The energy and momentum then come from the self-movement of the parti-
cle and, as we have suggested earlier, may ultimately originate in the vacuum fluctuations. 
In such movement there is no intrinsic reason why energy and momentum should always be 
conserved. To be sure, this conservation holds for an isolated system in the classical limit, 
but it also holds there in our approach. Its failure to hold quantum mechanically is, as we 
have seen, of exactly the order as it is in the usual interpretation. In our approach one may 
however say that the electron viewed as a particle is never completely isolated because it is 
always affected by the quantum field and possibly by the vacuum fluctuations (so that the 
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degree of isolation of any given system is, in general, relative and limited). The energy of 
the particle is, in fact, strictly conserved only in special cases, i.e. stationary states.

We must emphasise again that the one-body case is at best a simplification and an 
abstraction. For example, in the case of the slits, the particle may be strongly affected by 
the system through which it has gone, even when it is far away. If we treat the slits and 
the electron as a single combined system (as we shall show in chapter 4, section 4.2) it 
would then be possible to regard the resulting many-body wave function as expressing a 
direct nonlocal interaction between the electron and the slit (along lines to be discussed in 
more detail in the next chapter). In this case the total momentum of the combined system 
would be conserved because the slit system would take up the momentum lost by the 
particle. (This would evidently also happen in the conventional interpretation (see Bohr 
[14]).) Since the slit system is so heavy, its response would be negligible in comparison 
with the statistical fluctuations of the momentum so that this transfer would not show up 
in experiment.

Indeed whenever we abstract a system from a larger one, the wave function will reflect the 
overall system from which the abstraction has been taken. Therefore the goal of obtaining 
complete conservation for what we have wrongly been calling an isolated system will prove 
to be unattainable. For example, even if we take the slits and the electron as a combined 
system, the incident quantum field would reflect the collimating slits and velocity selectors 
which determined the beam incident on the slit system in question. And so, because the 
quantum potential can be large even when the quantum field is small, it follows that we will 
inevitably have non-conservation of both energy and momentum resulting from the fact 
that complete isolation of any quantum system is actually impossible.

This behaviour is reminiscent of Bohr’s argument mentioned in chapter 2, namely that 
we cannot discuss the properties of a particular system apart from the context of the entire 
experimental arrangement with the aid of which these properties are observed. But of 
course, the difference is that we have given a conceptual analysis that explains why all this 
happens, whereas for Bohr nothing more can be said that can go beyond the description of 
the experimental phenomenon itself. 

 
Figure 3.4: Schematic AB effect
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3.8 The Aharonov-Bohm effect

A particularly interesting application of our interpretation is to the Aharon-ov-Bohm (AB) 
effect [17]. This effect demonstrates that a magnetic line of flux can produce observable 
modifications of an electron interference pattern, even though the electrons themselves 
never encounter a magnetic field. This is often felt to be mysterious because it is generally 
assumed that only the field B(x) is physically active and that the vector potential, A, from 
which the field is derived via  has itself no further physical significance 
beyond that of being a mathematical auxiliary in the description of the field. If no magnetic 
field acts on the electrons how then can the interference pattern be changed?

We now give a brief description of the experiment. An electron beam from the source 
and collimating system, A, is incident on a beam splitter. The two resulting beams go round 
a line of flux and are recombined to meet again at a screen B, as shown in figure 3.4. When 
the flux is zero, a certain interference pattern is obtained. But for a finite value of the flux, 
this pattern is shifted. This shift was predicted from the quantum theory and it has been 
verified experimentally [18].

The ordinary quantum mechanical treatment begins with the Schrödinger equation for 
the case where there is an electromagnetic vector potential, A. This is 

 

 

The above equation has a property called gauge in variance. That is, if we replace ψ by ψ′ 
exp[iχ(x)] and A by  then we find that ψ′ satisfies the same Schrödinger equation 
with A replaced by A′. It is evident that the magnetic field  is not changed in 
this transformation. Thus the vector potential is not fully defined by the fields, but may be 
changed arbitrarily by a gauge transformation. It is for this reason that the vector potential 
is regarded as a mathematical auxiliary rather than a genuine physical concept. However, 
although A itself has no unique physical definition, we note that

 

 

has a unique physical significance for it is not affected by the gauge transformation 
 because

 

 

vanishes. With a line of flux of strength Φ, the vector potential is

 

 

where  is the unit vector in the  
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Since the magnetic field is zero outside the line of flux, it follows that A should be 
derivable from a potential in this region. However, this potential cannot be single valued 
or else the flux, Φ, inside the circuit would have to be zero. Let λ represent this potential. 
We have

 

 

This implies that there must be a cut somewhere in this space which we are not allowed to 
cross so that in this restricted space, the potential λ is single valued. As long as we restrict 
ourselves in this way, we may write Schrödinger’s equation as

 

 

If we make the gauge transformation ψ=ψ′ exp[ieλ/c] we find that ψ′ satisfies the simple 
Schrödinger equation 

 

 

We can therefore write for the actual solution

 

 

This means that the flux line will affect the phase of the solution by a factor exp[ieλ(x)/c]. 
In general λ(x) will be different in the two beams and when the two beams come together, 
the relative phases will therefore have been altered by

 

 

In this way we predict a fringe shift, which we cannot explain as long as we believe that 
only the magnetic field can affect the electron. (The above treatment is an approximation 
but an exact treatment gives the same result [17].)

However, in our interpretation there can be additional quantum forces. Indeed if we 
define the velocity as

 

 

we can show from Schrödinger’s equation that
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where Q is the quantum potential defined in the usual way as   Evidently 
R is not altered by the gauge transformation which affects only the phase and so Q is gauge 
invariant.

We see then that in general, in addition to the magnetic force, there is a quantum force 
which is present even when the magnetic field is zero. This is basically how the AB effect is 
to be explained. It is clear that Q will be large only where R is changing rapidly. There will, 
of course, be a small quantum potential at the edge of the beam, but the particle deflections 
due to this correspond only to what is, in the usual interpretation, called diffraction of the 
beam at its edges. The main variation of R will occur where the two beams overlap to produce 
interference. Here the quantum potential will be large; indeed it is just what is responsible for 
the interference (as we have seen, for example, in the two slit experiment). The phase shift 
will then alter the quantum potential in a significant way and this will explain the origin in 
the shift in the interference pattern.

This pattern has been calculated for a case in which the beam is split by a pair of slits with 
the line of magnetic flux in the geometric shadow between them. The trajectories are shown 
in figure 3.5 [19]. One can see how the orbits are shifted so as to displace the net interference 
pattern. The corresponding quantum potential is shown in figure 3.6 and can be seen to be 
similarly shifted (compared with, for example, figure 3.1). 

 
Figure 3.5: Trajectories for the AB effect
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Figure 3.6: Quantum potential for the AB effect

The above completes the explanation of the AB effect. However, it should be noted that 
this explanation has an interesting further implication; i.e. that the vector potential actu-
ally has a physical effect at the quantum level. The vector potential enters into 
Schrödinger’s equation in such a way as to alter the wave function and this leads to the 
corresponding force in the acceleration of the particle. However, in the classical limit this 
effect becomes negligible and here it may be said that the vector potential is physically 
not effective. The mistake in the common way of talking about this is the tacit assump-
tion that the classical idea about the vector potential also holds quantum mechanically.
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 Chapter 4  
The many-body system

We shall now go on to consider the many-body system in which we shall see, in several 
striking ways, a further development of the difference between the classical and quantum 
ontologies, along with new concepts that are required for the latter.

4.1 The ontological interpretation of the many-body system

Let us begin by considering the two-body system. The wave function ψ(r1, r2, t) satisfies 
the Schrödinger equation

 
(4.1)

where  and  refer to particles 1 and 2 respectively. Writing ψ= Rexp(iS/ħ) and defining 
P=R2=ψ*ψ we obtain

 
(4.2)

where

 
(4.3)

and

 
(4.4)

As in the case of the one-body system, equation (4.2) can be interpreted as the quantum 
Hamilton-Jacobi equation with the momenta of the two particles being respectively 

 (4.5)

The above is evidently an extension of the guidance relationship for the two-body system. 
It implies that the particles are guided in a correlated way. To see the significance of this 
correlation, one can consider the quantum potential, Q, which follows from the assumption 
that Ψ satisfies Schrödinger’s equation.

As can be seen from equation (4.3), this potential contains R both in the denominator 
and the numerator, so that it does not necessarily fall off with the distance. We have already 
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seen that for the one-body system this means that the particle can depend strongly on dis-
tant features of the environment. In the two-body system we can have a similar dependence 
on the environment, but in addition, the two particles can also be strongly coupled at long 
distances. Their interaction can therefore be described as nonlocal. This is the first of the 
new concepts implied by the causal interpretation that comes out in the many-body case.

Going on to the N-body system, we would obtain in a similar way

Q=Q(r1, r2,…, rN, t)  

so that the behaviour of each particle may depend nonlocally on the configuration of all the 
others, no matter how far away they may be.

As in the one-body case, we may take P=R2 as the probability density, but this now 
is in the configuration space of all the particles. The Schrödinger equation will imply the 
conservation of this probability (see equation (4.4)). Therefore if P=R2 initially, this will 
hold for all time. And as explained for the one-body case, if P≠R2 initially, typical chaotic 
movements will bring about P=R2 in the long run as an equilibrium distribution (as we will 
show in detail in chapter 9).

For several centuries, there has been a strong feeling that nonlocal theories are not 
acceptable in physics. It is well known, for example, that Newton felt very uneasy about 
action-at-a-distance [1] and that Einstein regarded it as ‘spooky’ [2]. One can understand 
this feeling, but if one reflects deeply and seriously on this subject one can see nothing basi-
cally irrational about such an idea. Rather it seems to be most reasonable to keep an open 
mind on the subject and therefore allow oneself to explore this possibility. If the price of 
avoiding nonlocality is to make an intuitive explanation impossible, one has to ask whether 
the cost is not too great.

The only serious objection we can see to nonlocality is that, at first sight, it does not 
seem to be compatible with relativity, because nonlocal connections in general would 
allow a transmission of signals faster than the speed of light. In later chapters we extend 
the causal interpretation to a relativistic context and show that although nonlocality is still 
present, it does not introduce any inconsistencies into the theory, e.g. it does not imply that 
we can use the quantum potential to transmit a signal faster than light.

While nonlocality as described above is an important new feature of the quantum the-
ory, there is yet another new feature that implies an even more radical departure from the 
classical ontology, to which little attention has generally been paid thus far. This is that the 
quantum potential, Q, depends on the ‘quantum state’ of the whole system in a way that 
cannot be defined simply as a pre-assigned interaction between all the particles.

To illustrate what this means, we may consider the example of the hydrogen atom, 
whose wave function is a product of f(x), where x is the centre-of-mass coordinate, and g(r) 
where r is the relative coordinate

Ψ=f(x)g(r).  

The quantum potential will contain a term representing the interaction of electron and 
proton
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where μ is the reduced mass of the electron.
In the s-state, Q is a function only of r itself, while with a linear combination of s- 

and p-wave functions it is easily shown to depend on the relative angles, θ and  as 
well. Evidently, it is impossible to find a single pre-assigned function of r, which would 
simultaneously represent the interaction of electron and proton in both s- and p-states. And, 
of course, the problem would be still more sharply expressed if we brought in all the other 
states (d, f, etc.).

The relationship between parts of a system described above implies a new quality of 
wholeness of the entire system going beyond anything that can be specified solely in terms 
of the actual spatial relationships of all the particles. This is indeed the feature which makes 
the quantum theory go beyond mechanism of any kind. For it is the essence of mechanism to 
say that basic reality consists of the parts of a system which are in a preassigned interaction. 
The concept of the whole, then, has only a secondary significance, in the sense that it is 
only a way of looking at certain overall aspects of what is in reality the behaviour of the 
parts. In our interpretation of the quantum theory, we see that the interaction of parts is 
determined by something that cannot be described solely in terms of these parts and their 
preassigned interrelationships. Rather it depends on the many-body wave function (which, 
in the usual interpretation, is said to determine the quantum state of the system). This 
many-body wave function evolves according to Schrödinger’s equation. Something with 
this kind of dynamical significance that refers directly to the whole system is thus playing 
a key role in the theory. We emphasise that this is the most fundamentally new aspect of 
the quantum theory.

The above-described feature should, in principle, apply to the entire universe. At first 
sight this might suggest that we could never disentangle one part of the universe from 
the rest, so that there would be no way to do science as we know it or even to obtain 
knowledge by the traditional methods of finding systems that can be regarded as at least 
approximately isolated from their surroundings. However, it is actually possible to obtain 
such approximate separation in spite of the quantum wholeness that we have described 
above. To see how this can come about, let us consider the special case in which the wave 
function Ψ(r1, r2, t) can be written as the product

 
 

The quantum potential then becomes the sum of two terms

Q(r1, r2, t)=QA(r1, t)+QB(r2, t),  

where
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and

 

 

In this case the two systems evidently behave independently. In chapter 8 we will show 
that there is a widespread tendency for such factorised wave functions to arise in typical 
situations that prevail in the present stage of the development of the universe. Moreover 
we shall also show that in the classical limit where the quantum potential is negligible, 
nonlocal interactions will for this reason not be significant.

We may say that while the basic law refers inseparably to the whole universe, this law is 
such as to imply that the universe tends to fall into a large number of relatively independent 
parts, each of which may, however, be constituted of further sub-units that are nonlocally 
connected. Therefore we can deal with these relatively independent parts in the traditional 
way as we do our experiments.

4.2 More on the notion of active information

We have seen that quantum theory implies a radically new behaviour of matter in several 
respects. It has been shown that all of this can be understood in terms of our notion of active 
information applied, not only to the one-body system, but also to the many-body system. 
Of course in a purely logical sense, the theory could be said to be defined without this 
notion and could, of course, be thus expressed in a logically consistent way. But it is a key 
part of our intention in this book to help make the theory more intelligible in an intuitive 
sense, and not merely regard it as a system of equations from which could be derived 
algorithms permitting a calculation of interesting results. We feel that at least something 
like the notion of active information would be needed in any attempt to do this; e.g. to 
account for quantum interference and the peculiar nonlocal properties of the many-body 
system in an intuitively understandable way. Here we emphasise again what we have said 
in chapter 3, that the notion of active information corresponds to a tremendous range of 
common experience. We have generally devalued this sort of experience as far as physics is 
concerned and have assumed that physical laws should contain only mechanical concepts 
such as position, momentum, force, etc. When it is found that these do not apply coherently 
in a quantum context, then as explained in chapter 2, it is effectively assumed that all we 
can do is to use the quantum formalism as an algorithm to calculate the probabilities of 
experimental outcomes. But what we are pointing out here is that if we suitably extend the 
kind of concepts that we are willing to admit into physics (e.g. to include active information) 
then we can obtain a much better intuitive apprehension of the theory. This, in turn, may 
help guide our thinking in physics into new directions (some possibilities of which we shall 
discuss in chapters 14 and 15).

Let us now consider the many-body system from this point of view. The wave function is 
defined in the configuration space of all the particles. Its effect on the particles is determined 
by the phase S and the quantum potential Q, both of which depend only on the form of the 
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wave function and not on its amplitude. Along the lines discussed in chapter 3, we may 
therefore regard the wave function as containing active information. But this information is 
ordered in the configuration space rather than in the ordinary space of three dimensions.

The fact that the wave function is in configuration space implies that we have to look 
more carefully into the meaning of active information in such a context. First of all we 
may consider its implications for all the motions of the particles. These now respond in a 
correlated way to what is, in effect, a common pool of information. This information guides 
the particles according to the condition  which, of course, leads 
to a generally nonlocal quantum potential that we have already discussed. Different linear 
combinations of the wave functions will give rise to different pools of information, which 
in turn will give rise to corresponding differences in the behaviour of the system. 

When the wave function is factorised into independent products, this will correspond 
to having independent pools of information. There is therefore an objective difference 
between systems which are wholes guided by a pool of common information and systems 
constituted of independent parts guided by separate pools of information. We may contrast 
this possibility of objective wholeness with what happens in classical mechanics, in which 
the notion of a whole is a subjective convenience for describing the behaviour of what are 
in reality a set of independently existent parts in interaction.

The fact that the wave function is in configuration space clearly prevents us from 
regarding the quantum field as one that carries energy and momentum that was simply 
transferred to the particles with which it interacted (thus effectively pushing or pulling 
mechanically on the latter). This is a further factor in addition to the form dependence of 
the activity of the field which leads us to consider the interpretation of this field as active 
information. The multidimensional nature of this field need not then be so mysterious, 
since information can be organised into as many sets of dimension as may be needed.

We may illustrate these notions by looking at the interference experiment as a two-body 
system. To simplify the discussions, we assume that the slit system is rigid and can be 
described in terms of a single centre of mass coordinate, y. Clearly the mass, M, of the slit 
system is much greater than the mass, m, of the electron. In this case it is well known that 
the wave function can be approximated as

Ψ=ψ(x−y)F(y).  

The quantum potential is

 

 

In the limit that  the part of Q that acts on the electron reduces to
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The above is essentially the same as that obtained in the one-body system, but the important 
difference is that it is a function of (x−y). Therefore, as has indeed already been explained 
in chapter 3, section 3.7, the energy and momentum are not coming from the quantum 
field. Rather the electron and the slit system are ‘in-formed’ to respond in a correlated way 
by the pool of information that is common to both. The slit system is, of course, so heavy 
that its response can be neglected. But still from the conceptual point of view, we have to 
look at this process as a kind of interaction between the electron and the slit system rather 
than as an effect of the quantum field in space-time. The one-body treatment is therefore an 
abstraction which leaves out this essential feature.

Finally we wish to point out that even the classical potential can be looked at as repre-
senting the effects of active information. To do this we recall that, for example, in a two-
body system each particle is guided by the total phase S(x1, x2) of the wave function. As we 
have seen earlier, this guidance condition combined with Schrödinger’s equation implies 
the extended quantum Hamilton-Jacobi equation

 

 

In the above equation, V and Q appear in essentially the same way. In fact both describe 
certain effects of the guidance condition and therefore of active information in the wave 
function. What is then the difference? The difference is that Q describes a part of the 
change with time of the active information that depends in a nonlocal way and in detail on 
the whole wave function (i.e. what is commonly called the quantum state). On the other 
hand, V describes a part of the change of this information that is independent of all this and 
that is generally local in the way that it acts. This part is what manifests in the classical 
limit.

Physics has already developed in such a way that the classical potential, V, can be 
regarded as an actual existent field distributed throughout three dimensional space. This 
field can be regarded as the source of the change of information with time brought about 
by V in the Hamilton-Jacobi equation. It obeys a wave equation implying the detailed 
conservation of energy and momentum. Therefore we can, if we wish, attribute the energy 
and momentum to the field and thus imagine it is flowing throughout space and into and 
out of the particle. But as we have seen, this picture could not be coherently applied to the 
quantum potential. Moreover as we shall see in chapter 11 when we consider our interpre-
tation of the quantum field theory, the picture of a continuously conserved flow of energy 
and momentum will not also apply except as a limiting case holding only in the classical 
approximation.

4.3 Further applications of many-body wave functions

We shall now give two further applications of the notions that have been described in this 
chapter which will make the physical meaning of our interpretation clearer. 
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4.3.1 The chemical bond

We begin by considering the chemical bond. Classically it is incomprehensible why chemi-
cal bonds can form, and furthermore, why there are so many specific kinds of such bonds. 
It is well known that the quantum theory has explained this in a generally satisfactory way. 
But this has been achieved at the expense of a loss of intuitive comprehension of what is 
involved physically in such a bond. In our interpretation we obtain a more intelligible way 
of understanding this.

We shall illustrate these ideas in terms of the hydrogen molecule with its covalent bond. 
The molecule consists of two protons whose coordinates we label by xA and xB, and two 
electrons whose coordinates are represented by r1 and r2. The interaction between the par-
ticles are of the Coulomb type. This can be expressed as

 

 

One of the usual procedures (due to Heitler and London) is to solve the Schrödinger equa-
tion for this case approximately, beginning with functions that are solutions when the nuclei 
are very far apart. We then have two separate hydrogen atoms, each in an s-state. Because 
the protons are so heavy we can, in the first approximation, regard them as fixed in speci-
fied positions. One approximate solution of the combined system is then

 (4.6)

This represents two separated hydrogen atoms A and B in their lowest s-states in which the 
first electron is in atom A, while the second is in atom B. Another solution is

 (4.7)

in which the first electron is in atom B, while the second is in atom A. These two states 
evidently have the same energy. And as is well known from standard perturbation theory, 
one has to start from a suitable linear combination of ΨI and ΨII in order to obtain a series 
of approximations to the wave function when the particles come closer together.

Because of the symmetry of VI between r1 and r2 it follows, as can easily be shown, that 
the appropriate linear combinations are 

Ψ±=1/√2(ΨI±ΨII). (4.8)
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Figure 4.1: Possible bonding energies of two hydrogen atoms

From this we obtain:

 (4.9)

(noting that ψI and ψII are real because  represents the lowest s-state). The energy of these 
states comes out as a function of the separations η= |xA−xB|. They are shown in figure 4.1.

Evidently the state corresponding to E+ gives rise to an attraction between the protons 
at medium distances, which turns into a repulsion at short distances. On the other hand, the 
state corresponding to E− leads everywhere to a repulsion. There is no way to understand 
this energy difference solely in terms of a pre-assigned interaction of the particles constitut-
ing the molecule. For, since the wave function is real, the momenta of all the particles are 
zero and the energy is just the sum of the classical interaction energy VI and the quantum 
potential

E±=VI+Q±. (4.10)

To obtain the quantum potential we must first obtain an expression for R. From (4.9), (4.6) 
and (4.7) we see that 
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This shows the quantum potential will be a function of all the particle coordinates implying 
a nonlocal interaction with the kind of quantum wholeness that we have described in the 
previous section. This latter means that even if all the particles are in the same positions 
and have the same velocity υ=0 for the two solutions, their energies will be different. This 
difference evidently has to be attributed to the quantum potential which is different for the 
two cases. As we have already seen, for the case of Ψ+, the molecule will be stable while for 
Ψ− it is not. The force that holds the molecule together and that determines the specificity 
of the chemical properties is thus a particular case of the nonlocality and wholeness which 
is, as we have pointed out earlier, the most essentially new feature implied by the quantum 
mechanics.

In terms of the usual interpretation of the quantum theory, we have no intuitive notion 
of the difference between the states Ψ+ and Ψ_, nor indeed what it means to form a linear 
combination of states. Yet it is just this which is responsible for a vast range of chemical 
properties. In our interpretation these properties are understood through the notion that 
the wave function of a molecule constitutes a common pool of information that guides the 
activity of all its particles in related ways along the lines discussed at the end of the previ-
ous section. Different wave functions, constituting different pools of information, will then 
give rise to well-defined differences in the behaviour of the system.

4.3.2 Superfluidity and superconductivity

Superfluidity and superconductivity provide a very good illustration of how a common 
pool of information can give rise to strikingly new properties of a many-body system.

It is well known that at low temperature many substances can go into a new state in 
which currents (either of atoms or electrons) can flow indefinitely without viscosity or 
resistance. This state is stable only up to a certain temperature at which the property dis-
appears. These super-flow properties have been explained as a consequence of the many-
body Schrödinger equation, but this explanation is very abstract and gives little intuitive 
understanding of how the phenomena in question come about.

Our discussion is aimed at illustrating how the quantum potential makes superflow pos-
sible in its more common forms such as ordinary low temperature superconductivity and 
superfluidity in He4. It is not however intended to be a detailed treatment of all the com-
plexities involved in the above nor will we consider the less common forms of superflow 
such as high temperature and gapless superconductivity and superflow in He3.

We begin by discussing the case of superfluidity because this is easier both conceptu-
ally and mathematically, but, as we shall see later, basically the same considerations apply 
to superconductivity as we have restricted this term above. What is essential here is that 
helium nuclei are bosons and that the electron pairs that are responsible for superconduc-
tivity are also effectively bosons.

At first sight the problem of superflow in He4 seems to be almost impossibly difficult 
because the helium nuclei repel each other with such strong forces that it would appear 
that no reasonable approximation could be made. However, it has been shown by D.Pines 
[3] that, as a consequence of the short range particle correlations, the system could be 
described as a collection of ‘quasi-particles’ with only weak soft-core repulsions between 
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them. In the first approximation we can neglect these latter, so that a good starting point 
for the condensate wave function is one in which all the particles are moving at the same 
velocity υ=K/m. This wave function, which is evidently symmetric, is

 
(4.11)

where rj represents the coordinate of the jth particle and where we are assuming units in 
which ħ=1.

However, the fact that all the particles are moving at the same speed is not sufficient by 
itself to account for the properties of superfluidity. What is required, in addition, is that this 
state be stable under external perturbation. That is to say, under an external disturbance, a 
particle should not be able to drop out of the common velocity υ=K/m, by giving up energy 
and going to a lower velocity υ′=(K−q0)/m. To account for this we follow along the lines of 
the explanation given by Landau [4], Bogolubov [5] and Feynman [6].

A key point for such stability is that it should not be possible to change the momentum 
of a single particle in this system from K to K−q0 without affecting the others in such a way 
as to bring about a net increase in energy of the whole system. Basically this stability arises 
because of the symmetry of the wave function. Indeed it is easily seen that without this 
symmetry there can be no such stability. Thus consider, for example, what would happen 
if the wave function had no particular symmetry. We could then obtain an excited wave 
function by giving momentum to a single particle, say the ith, which would give rise to a 
wave function

Ψi=exp[−iq0·ri]Ψ0.  

Or

 
(4.12)

Clearly this will be a possible solution of Schrödinger’s equation and so there is nothing 
to prevent this loss of momentum by slowing down one of the particles independently of 
others.

However, for bosons, the wave function has to be symmetric. The lowest state of 
excitation corresponding to a loss of momentum, q0, will be

 
(4.13)

If we neglect interactions, this too would permit the same kind of loss of momentum we 
described above. However, as shown by Bogolubov and by Feynman, when interactions 
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are taken into account, the system is capable of supporting sound waves with frequency 
ω=ω(q). The term ρ(q0)= ∑jexp[−q0·rj] is well known to be the Fourier coefficient of the 
particle density. In such a case it is

 
(4.14)

Therefore the wave function (4.13) represents the excitation of a sound wave (while the 
equation (4.12), which is a wave function of no particular symmetry, represents no change 
of particle density and does not represent such a wave). ρ(q0) thus describes a collective 
deviation from equilibrium whose energy is E=ω(q0). At low frequencies, ω(q0) will satisfy 
the linear relationship

 
 

where υs is the velocity of sound, while at higher frequencies it deviates from this relation. 
(As explained by Feynman [6], these deviations are associated with rotons.) Stability will 
be achieved if the energy required to create a wave of excitation is greater than the kinetic 
energy given off by the particle for all q0. This requires that

 

(4.15)

The above will follow if ω(q0)>K·q0/m or if υ=k/m<ω(q0)/q0, where υ is the velocity of 
flow. This is, of course, just the well-known condition obtained by Landau [4]. 

It has to be pointed out that the Landau condition does not determine the actual maximum 
velocity in typical experimental situations such as flow in tubes. Indeed this is in general 
considerably less than that given by the Landau condition and is determined by further 
factors such as the existence of rotons and vortex structures of various kinds (Feynman 
[6]). However, the Landau condition is evidently still satisfied in such cases. Moreover 
it is relevant to understanding the existence of superflow because if it is not satisfied, the 
particles can be scattered out of the common velocity thus making superflow impossible. 
Clearly no matter what the detailed structure of the vortices may be, the understanding of 
superflow depends basically on this sort of explanation of why the particles move stably 
together with a common velocity.

To explain this stability intuitively, we shall have to show how the quantum potential 
implied by the wave function (4.13) actually constitutes active information that keeps 
all the particles moving together in spite of perturbations that would otherwise scatter 
them. To do this we shall have to calculate how the wave function (4.13) changes when a 
perturbation is introduced.
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To simplify the problem we assume a small perturbing potential, V, which, of course, 
has to be a symmetric function of all the particles. We therefore write

 
(4.16)

With the aid of perturbation theory, we find that

Ψ=Ψ0+ΔΨ  

where

 
(4.17)

In computing ΔEq it will be sufficient for the illustrative purposes of this discussion to 
restrict ourselves to values of q small enough so that the collective excitations will have the 
linear frequency relation ω(q)=qυs, where υs is the velocity of sound. This gives us

 
(4.18)

Evidently as long as υs>K/m this denominator will never vanish and so there will be no real 
transitions, i.e. the perturbation involves only what are, in the usual interpretation, called 
virtual states. (When rotons are taken into account the limiting velocity of superflow will 
in general be less than υs but the above condition will still be satisfied.) Evidently we may 
reasonably assume that V(q) becomes negligible for q/m>υs (this means that the potential 
is ‘soft’ which is implied by the fact that its high Fourier coefficients are small). We then 
obtain

 
(4.19)

Once again for the purposes of illustration we may assume that  This gives

 
(4.20)

To further simplify the calculation we assume a V(r) that gives a Fourier coefficient 
V(q)=qexp[−qλ]. This implies that
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(4.21)

Writing

 

 

where A and B are suitable constants, we obtain

 
(4.22)

The probability density is, in the first approximation,

 
(4.23)

and the current density of the ith particle in the direction q will be

 
(4.24)

The velocity in the direction q will be given by 

 
(4.25)

 
Figure 4.2: Stream lines around obstacle in liquid helium
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According to equation (4.23), the distribution is altered in the neighbourhood of the 
perturbation. If the perturbation is repulsive, the particles will on the whole be pushed away 
and vice versa if it is attractive. According to equation (4.24) the current will change in a 
corresponding way. This implies that for a repulsive potential, the particle will first move 
away from the perturbing obstacle. But because the perturbed wave function vanishes at 
infinity, the particle will eventually move back and will be left with its original velocity, 
thus implying there is no scattering (as shown in figure 4.2).

In ordinary scattering processes, the energy conservation condition between initial and 
final states can be satisfied and we therefore get a real transition into a scattered wave. 
In the case of a superfluid however energy conservation cannot be satisfied so we get 
only virtual contributions to the wave function. If we evaluated the quantum potential, it 
would be seen that these latter contributions imply an additional force on the particle which 
accounts for why it is first accelerated away from the obstacle and then brought back to its 
original velocity. Since every particle will behave in essentially the same way, it follows 
that the liquid as a whole will flow around the obstacle and then reconstitute its flow in its 
original direction.

This is basically our intuitive explanation of why the state of superflow is stable. This 
is evidently a purely quantum mechanical response of the whole system. It involves not 
only nonlocal interactions due to the quantum potential, but also the irreducible quantum 
wholeness implied by the fact that this interaction cannot be expressed in terms of a pre-
assigned function of the particle coordinates.

All that we have said here also applies to superconductivity in which the charge carriers 
are electron pairs that act like bosons. The details can be found elsewhere [7], but the 
essential point is that, as with He4, there is a ‘gap’ representing the energy needed to 
remove an electron pair from the common velocity. It will follow then that if there is an 
obstacle, the charge carrier will go round it and reform without scattering in the same way 
as happens for He4.

In both cases the stability of the state of superflow can be understood further with the 
aid of the notion of the active information that we have discussed earlier in section 4.2 of 
this chapter, where we pointed out that each particle is guided according to the relation 

 It may then be regarded as part of the common pool of information 
according to which each particle determines its velocity. One can say that in the state of 
superflow, this information brings about a coordinated movement of all the particles that 
can be thought of as resembling a ‘ballet dance’ (in which all the dancers separate in a 
systematic way to go round an obstacle and then reform their original pattern).

As the temperature goes up the property of superfluidity disappears. In terms of our 
approach, this is because the wave function breaks up into a set of independent factors 
which can, as pointed out earlier, be thought of as representing independent pools of 
information. The electrons will then no longer be guided by a common pool of information 
and will, therefore, scatter off obstacles rather than go round them and return to their 
original movement. In this way they begin to behave like an unorganised crowd of people 
who are acting independently and get in each other’s way so that the property of superflow 
disappears.

This means that the guidance condition and the quantum potential implied by it can, 
under certain conditions, have the novel quality of being able to organise the activity of an 
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entire set of particles, in a way that depends on a pool of information common to the whole 
set. This behaviour is reminiscent of what is found in living beings which are similarly 
organised by a common pool of information that is now thought to reside in the genes (and 
also society which is evidently organised by common pools of information of yet another 
kind). Thus a considerable similarity is seen between the microlevel and other levels which 
we shall discuss in more detail in chapter 15.
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 Chapter 5  
Transition processes considered as  

independent of observation
In the usual interpretation it is an essential feature that transition processes can only 
be discussed in a context in which they are observed in a measurement process. In an 
ontological approach such as ours, it is, of course, necessary to discuss transition processes 
taking place on their own, independently of their being observed. In this chapter we shall 
show how this can be done.

We shall begin with the simple example of barrier penetration and then go on to consider 
transitions of electrons in atoms from one level to another. In developing our ideas we shall 
also show that in our interpretation, the quantum theory implies two general tendencies that 
oppose each other:

1.   A tendency for wave functions to spread and become less well defined in space 
when the system is isolated.

2.   A tendency for these functions to ‘narrow down’ the range in which they have 
an appreciable effect when interaction with a background takes place.

We shall call this latter tendency ‘self-definition’. It is essential to take this into account if we 
are to understand how the universe can be in a fairly well-defined state at any given moment 
in spite of the tendency to become less well defined because of the general ‘spreading’ of 
wave functions. On this basis we are able to discuss the states of things without any need 
to refer to a measuring apparatus which, in the usual interpretation, would cause the wave 
function to ‘collapse’ to a more definite state. 

 

Figure 5.1: Square potential barrier of height V

5.1 The example of barrier penetration

Let us consider a one-dimensional square barrier of height V and thickness a located 
between x=0 and x=a, as shown in figure 5.1.

We assume a particle of momentum p in region I incident from the left with energy E<V. 
In accordance with standard procedure, we also assume a reflected wave in region I with 
the same momentum. For region III we assume only an outgoing wave, which evidently 
will also have the momentum p. If we write the wave function in region III as
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ΨIII=Aexp[ipx], (5.1)

again setting ħ=1, then the solution in region II will be the linear combination

ΨII=Bexp[qx]+Cexp[−qx], (5.2)

where q=√2m(V−E).
In region I the solution will be

ΨI=Dexp[ipx]+Eexp[−ipx]. (5.3)

It is necessary then to provide for the continuity of the wave function and its derivative at x=0 
and x=a. This will determine the ratios of the coefficients and therefore the transmissivity and 
the reflectivity [1], If the barrier is high and thick, the transmitted wave will be small and the 
reflected wave very nearly equal in intensity to the incident wave.

We then form a wave packet by integrating ψ over a small range of p. This packet will be 
incident from x=−∞ and will come up to the barrier where some of it will be transmitted, but 
(in general) most will be reflected. There will be a period during which the incident and the 
reflected wave packets overlap. If the transmissivity were zero (as it would be for an infinite 
barrier), the incident and reflected packets would form something very close to a standing 
wave which would have essentially a real wave function. The velocity would therefore be 
zero. But if the reflected wave is not quite as strong as the transmitted wave there will be a net 
(in general) small velocity in the region in which incident and reflected waves overlap, and as 
can indeed be verified from the formula

 
(5.4)

When the incident wave packet disappears and only the reflected wave packet remains, the 
speed will once again be p/m, but of course in the negative direction.

There is a complicated variation of velocity inside the barrier, but for the wave packet 
that has passed through, the speed will once again be p/m, but this time in the positive 
direction.

The trajectories for the case of a Gaussian wave packet with E=V/2 have been calculated 
for a range of initial positions of the particle within the wave packet [2]. Clearly their 
behaviour will depend on the quantum potential. This is shown as a function of x and t in 
figure 5.2. As the packet comes up against the barrier we can see the quantum potential 
developing as a function of time in the region of overlap of the incident and reflected wave 
packets. We can also see how the quantum potential modifies the potential inside the barrier 
in a rather complicated way. In general the quantum potential will lower the barrier height, 
thus permitting particles to enter it. This of course removes the mystery as to how barrier 
penetration is possible. For such penetration depends on the total potential V+Q and not 
just the classical potential V alone. But it also depends on whether the net potential V+Q 
is greater than E for the whole period in which the particle is inside the barrier. It is clear 
from the figure that this will in turn depend crucially on the initial location of the particle, 
because the quantum potential remains low only for certain periods of time and indeed may 
have spikes in certain places that would tend to reflect back a particle positioned there.
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All of this can be brought out clearly by considering the trajectories shown in figure 
5.3. We can see that only the particles that happen to be at the front of the wave packet can 
even enter the barrier. But even most of these will be turned around before they are able 
to go through. There is however a critical trajectory, which divides the trajectories that 
go through from those that do not. This evidently resembles a bifurcation point of a kind 
which is typical of the non-linear equations describing unstable systems. Indeed it is clear 
that even though the equation for the wave function is linear the quantum potential can be 
a highly non-linear function of the coordinates of the particle. Therefore we actually have 
here an example of such a bifurcation point.

 
Figure 5.2: Quantum potential for barrier (E=V/2)

 
Figure 5.3: Trajectories for potential barrier (E=V/2)
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Of course we have here only a very simplified and abstracted system. In real systems with 
many particles and complicated potentials, there will be many such bifurcation points, 
implying something close to chaotic motion [3]. But even in this simple system we can 
see the germ of the process by which quantum transitions can take place. The particle may 
go either one way or another, thus having an ‘all or nothing’ character. When we discuss 
the transitions in atoms, we will see this character coming out in a more complex context.

5.2 Active and inactive information

All the basic concepts required to understand quantum transitions from a purely ontological point 
of view are already implicit in the simple example of barrier penetration given above. The essen-
tial point is that the wave packet has split into two distinct parts, which, in this case, will never 
meet again, as one goes to +∞ and the other goes to −∞. The particle must enter one of these 
packets, because there is no probability of being in between where the wave function is zero.

We may conveniently describe this process by thinking that the two wave packets correspond 
to two distinct channels. Which channel the particle will actually enter is determined by 
its initial position in the incident wave packet. Once the channels are formed they remain 
separate. The probability of being in a given channel is found by integrating |ψ|2 over all 
the particle positions corresponding to that channel, and it is easy to show that this is just what 
would be obtained in the usual interpretation (e.g. in computing the probability of transition).

Since the channels do not overlap, the quantum potential in each can be calculated as 
if the other were not present. The same also holds for the guidance condition. Therefore 
in effect the system behaves as if it is in one of the channels only, with the appropriate 
probability that this is the case. We have, in this way, explained how a quantum transition 
takes place on its own, without the need to bring in a process of observation.

But this raises an important, question. Suppose, for example, that the particle is in the 
transmitted channel, corresponding to a wave function of very low intensity. Its physical 
properties are determined by this very weak quantum field, while the much stronger field 
corresponding to the reflected channel has no effect. Of course, as long as the channels do 
not overlap, we can understand this, because the quantum field does not act mechanically, 
but rather, as we have already discussed, it acts as information that guides the particle in 
its self-movement and in such action the intensity of the field does not matter.

Nevertheless one may raise the question of what would happen if the channels were 
made to overlap again. For example, in two or three dimensions the experiment could be 
arranged to reflect both of the quantum fields into the same region of space. When this 
happened, the larger field would overwhelm the smaller one and the behaviour of the 
particle would be radically altered. In other words while the information in an ‘empty’ 
channel may not actually be active on the particle at a given moment, it may have the 
potentiality to become active later. Therefore one cannot say that the transmitted particle 
is in a state that is entirely independent of the reflected channel.

This would, at first sight, seem to put in doubt our claim of having explained the transition 
process without the aid of an observation which would cause the wave function to ‘collapse’ 
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irreversibly and finally, for example, to the transmitted state. In this connection, however, 
it must at first be pointed out, that the possibility of interference of the two channels that 
we have described is an inevitable consequence of the quantum theory whether in our 
interpretation or in the usual one. As long as we restrict ourselves to the abstraction of a 
one-body system, this implication neither can nor should be avoided.

It is our thesis that only when we take into account the interaction of this system with 
a background containing many particles that the transition becomes, in effect, irrevocable. 
The reason for this is that the information in the unoccupied channel will lose all its 
potentiality for becoming active so that it will remain permanently inactive after interaction 
with a sufficiently complex background.

The simplest case in which this happens arises when the particle in question collides 
with another one and scattering takes place through a short range interaction.

To discuss this process let us consider a three-dimensional system but assume a barrier 
of finite width that is uniform in the x- and y-directions with a plane wave ψ=exp(ik0z) 
incident in the z-direction. The calculation of transmission coefficient will go through as in 
the one-dimensional case.

But let us assume now that an atom with coordinates y is placed in the transmitted beam. 
To simplify the problem, we suppose that its wave packet has average velocity zero. This 
packet is given by

 
(5.5)

Let us further assume that the incident particle is represented by a wave packet bounded in 
all three directions but travelling only in the z-direction. Then the transmitted wave can be 
represented by the packet

 
(5.6)

where  represents a vector in the direction of z and the packet is centred at  
Before the particles interact, the combined wave function will be

 
 

The particles will begin to scatter each other when their wave packets overlap. We 
postulate conservation of momentum and energy in this process. Because of the linearity 
of Schrödinger’s equation, we can deal separately with each of the terms that make up the 
wave packet. Thus a term that was initially exp[ik′·x] exp[ik·y] will, because of conservation 
of momentum, go over into exp[i(k′+K)·x]exp[i(k−K)·y]. The equation for conservation of 
energy then takes the form

 

(5.7)
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and this introduces a relationship between K and the initial momenta. Because the wave 
packets in k and k′ are fairly narrow, the above condition can be approximated by satisfying 
it for the values of k and k′ corresponding to maximum intensity, which are respectively 
k=0 and  Thus, to a good approximation, K can be obtained from the equation

 

(5.8)

Therefore K is related only to  and not to the precise values of k and k′. This will simplify 
the subsequent discussion in an important way.

We now return to the calculation of the wave function after interaction. This will be (as 
a function of time)

 

(5.9)

where 

 

 

and h(K) represents the amplitude that finally results from the process of interaction (which 
will depend on the potential V(x, y), of interaction between two particles). The sum over k 
must, of course, be restricted by the condition of conservation of energy.

To show what the above means let us consider the factor B(K, t) which we rewrite as

 

 

For t not too large, this can be written as

 

 

This corresponds to a wave packet moving with a velocity K/m. The term exp[−ik2t/2m], 
which we have neglected, describes the spread of the wave packet which may be taken to 
be small during the period of interest. A similar treatment could be given for A(K, t). This 
will also correspond to a wave packet, but moving with velocity −K/m′.
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What this all implies is that after interaction, the two particles are separating with a 
relative speed proportional to K. If the interaction is such that K is considerably greater 
than the initial spread of momenta in the wave packets (Δk and Δk′), then after a suitable 
time, the distances moved by the particles

Δx=−kt/m′ and Δy=kt/m (5.10)

will be greater than the widths δx and δy of the wave packets. When this happens the final 
wave function of the combined system Ψ(x, y, t) will cease to overlap with the initial wave 
function Ψ0(x, y, t). Moreover for different values of K, the particles will go in different 
directions so that the contributions of these different values of K to the total wave function 
will also cease to overlap.

This means that the original transmitted channel will now break into many parts. 
First there will be an unmodified transmitted channel in the regions far from the wave 
packet  and a weaker one close to this wave packet. Secondly there will be modified 
channels in which both the scattering particle y and the transmitted particle x will be going 
in various directions. Since all these channels do not overlap, the quantum potential (and 
guidance condition) for the combined system will be determined only by the channel into 
which the particle actually enters. All the other channels will then correspond to inactive 
information. 

Because there is such a process of the multiplication of non-overlapping channels 
corresponding to transmission of the particle, the possibility of bringing about overlap 
of transmitted and reflected channels in the way described earlier has effectively been 
eliminated. For in order to have such overlap, it is necessary that this overlap takes place in 
the configuration space of all systems which have interacted. Therefore if we merely have 
an arrangement that brings reflected and transmitted waves into the same region of space, 
there will still be no effect on the quantum potential. To have such an effect we would also 
have to bring together all the scattered channels. If this is not done, the information in the 
reflected channel remains inactive, even though it corresponds to a much more intense 
quantum field than does the transmitted channel.

Of course one could consider trying to bring back into the same region of space all 
the channels that resulted from the various scattering processes. Evidently this would be 
immensely difficult, almost certainly beyond our present technical capacity. Nevertheless it 
is still a logical possibility. But we can see that this possibility is not relevant here because 
all the particles concerned will keep on encountering further systems with which they 
interact, and these will bring about a further multiplication of channels.

Ultimately this process will lead to chaotic motions which are characteristic of 
thermodynamic equilibrium. As long as we accept the current explanations of the 
irreversibility of thermodynamic processes in terms of the notion of an approach to statistical 
equilibrium, for example through scattering, then we must also accept that the interactions 
that we have described here will similarly be irreversible. Therefore the channels to 
which we have alluded earlier will be irrevocably distinct. The quantum potential and 
the guidance condition will be determined only by the channel actually occupied by the 
system. The remaining channels will then correspond to what we have been calling inactive 
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information, i.e. information not only actually inactive, but also having no potential for 
becoming active.

All this implies that the channels corresponding to actually or potentially active 
information are constantly narrowing down as the system in question interacts with its 
surroundings. But it is implied by Schrödinger’s equation that the wave function of a 
system is constantly spreading (e.g. as shown in detail in chapter 3 for Gaussian wave 
packet). These two processes evidently oppose each other as we have already indicated 
earlier, and the net result comes out of the balance between the tendency to spread and the 
tendency to narrow down to a more definite form.

The narrowing down process produces a net effect that is essentially the same as that 
produced by the ‘collapse’ of the wave function in the usual interpretation. Yet there is no 
collapse here. At no stage do we need to violate our basic postulates in order to obtain the 
self-definition of the system. We shall discuss the full implications of this in more detail 
later, but for the present we shall emphasise only that this means that measurement does 
not have to play a fundamental role in our interpretation. Rather the universe is constantly 
defining itself and measurement is only a special case of this.

5.3 Quantum transitions discussed independently of measurement

We now go on to discuss the process of transition of an electron in an atom. If such an atom 
is to jump from one stationary state to another, it is necessary that there be an additional 
system available that can take up the energy given off. This is usually the electromagnetic 
field within which, for example, a photon can be created. However, to avoid the complexities 
arising in our interpretation of the electromagnetic field (which we discuss in chapter 11), 
we shall suppose that the energy is taken up in an Auger-like effect by an additional particle 
that was originally also in a bound state in the atom in question.

To make possible a comparatively short mathematical treatment, we shall use here a 
simplified model of this process in which both particles are initially in bound states within a 
localised potential well. We shall suppose that they are in s-states and that all the transitions 
can be restricted to s-states (i.e. there is negligible probability of going to states of higher 
angular momentum). To further simplify the model we will suppose that initially the two 
particles do not interact and that at t=0 a small perturbing potential V(x−y) is suddenly 
turned on (where x is the coordinate of the electron and y that of the particle which 
carries off the energy). We shall then apply the standard perturbation theory to calculate 
the changes of the wave function with time. The initial conditions will be determined by 
the requirement that the x-particle is in a stationary state with energy  and with wave 
function  (where we continue our notation in which ħ=1). The y-particle 
will be in a stationary state with energy  and with wave function  The 
net initial wave function will then be

 (5.11)

where  
After t=0 the Schrödinger equation for the combined system will be 
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(5.12)

Since we can restrict ourselves to s-states, it will be convenient to introduce the function

χ=rArBΨ,  

where rA and rB are the radius vectors of the respective particles. In terms of χ, Schrödinger’s 
equation becomes

 
(5.13)

with the boundary condition that χ=0 at rA=0 and rB=0. The initial wave function is, of 
course,

χ=χ0(rA)λ0(rB)exp[−iE0t],  

where χ0=rAψ0(rA) and  
For t>0 we then write

χ=χ0+Δχ,  

Δχ will contain the wave function components in which the x-particle has made a transition 
to χf exp[−iEft], while the y-particle has become free with absolute value of the momentum 
p. Since both particles were initially in s-states and since the x-particle is finally in an 
s-state, it follows that the final angular momentum of the y-particle is zero, so that it too 
is in an s-state. Recalling that χ=0 at rB=0, the wave function of the latter will then be 
proportional to

 

 

The typical contribution to the net wave function after transition will therefore be 
proportional to

 

 

We then obtain

 
(5.14)
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Perturbation theory then yields 

 
(5.15)

where ΔE=Ef−E0 which is the net increase of binding energy resulting from transition, and 
where the corresponding matrix element is

 
(5.16)

We will be interested in finding the form of Δχ for moderately long periods of time; i.e. for 
times long enough so that the factor

 

 

becomes a sharply peaked function with a maximum at that value of p for which the 
denominator vanishes. This function evidently has a width inversely proportional to 
the time t. Let us denote the value for which this function is a maximum by p=p0. In 
evaluating Δχ we can then replace p by p0 in all the terms in Δχ that multiply this factor. 
Also, in evaluating this factor we may write p=p0+Δp and neglect terms of the order of 
(Δp)2 (because we are considering t great enough so that the factor is large only for very 
small values of Δp). We then obtain   where υ0 is the 
speed of the outgoing particle. With these approximations we find that

 

(5.17)

For an unbounded system, this sum becomes an integral, which can be evaluated by means 
of contour integration. The wave intensity will be proportional to

 

 

The integral is finite everywhere including Δp=0, even though the separate terms are 
singular there. We may therefore evaluate it by choosing, in the well-known way, a contour 
in the complex plane that goes around Δp=0 in an infinitesimal semi-circle which is chosen 
so that only outgoing waves will appear for t>0. A typical term in the integral is proportional to
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If we choose the contour in the upper half of the complex plane as shown in figure 5.4, it 
can be seen that the integral vanishes. 

 
Figure 5.4: Contour to evaluate integral

On the other hand, if we take a term like

 

 

then by completing the contour in the lower half of the complex plane, we see that it does 
not vanish, but is equal to the residue at the singularity. By applying this method, we can 
see that all the terms containing the factor exp[i(p0+Δp)rB] will vanish. The remaining two 
terms will be proportional to

G(rB, t)=S(rB)−S(rB−υ0t),  

where S is the step function which goes to zero for negative values of its argument and is 
unity for positive values. This will imply a step-shaped wave that is spreading out at the 
speed υ0. The total wave function (for large t) is then

 
(5.18)

In the above equation the term χ0(rA)λ0(rB) represents the initial wave function of the 
combined system, while the term 

 

 

represents the contribution of the perturbation to this wave function.
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We shall show presently that if the rB-particle enters the region corresponding to the 

perturbed wave function, the effect of the initial wave function on the particles becomes 
negligible so that the system can be said to have undergone a transition to the final 
state. The total probability of this transition can be found by integrating the square of 
the second term, divided by  over drB. It is clear that this will be proportional to t 
(as it is in the conventional interpretations). However (as also holds in the conventional 
interpretations), this result will follow only for times much larger than 1/ΔE. For as we 
recall, this approximation, which arises from simplifying our various contour integrals, 
will not hold for times shorter than this. Indeed it is evident that at the very shortest times, 
the contribution of the perturbed wave function must be proportional to t itself, so that the 
probability of transition is proportional to t2.

To see the meaning of the above equation in more detail, it is instructive to take the ratio 
of the perturbed contribution to the wave function to the unperturbed contribution. This is

 

(5.19)

Because the matrix element  is, by hypothesis, small, this ratio will also generally 
be small. Where this is the case, the initial wave function will overwhelm the perturbation, 
which latter will then at most introduce a very small change in the overall wave function. In 
such a situation, the state of the particle would undergo negligible change. However, where 
the denominator in the above ratio is small, the situation can be quite different. Since λ0(rB) 
represents a bound state, the ratio will indeed become as small as we please for values of 
rB appreciably greater than the mean spread of this wave function. For these values of rB, 
the initial wave function will be negligible compared with the perturbed wave function. 
This latter will now dominate and the motion of the particle will no longer be affected 
significantly by the initial wave function. The motion implied by this wave function will 
carry the particle further and further from the atom at the speed υ0. The effective wave 
function of the system will then be proportional to χf(rA)exp[ip0rB]G(rB, t). This means that 
the outgoing particle is free, and that the bound electron now has a wave function χf(rA). 
In other words, a transition has taken place from a state in which the electron was bound 
with the wave function χ0(rA) and the y-particle with λ0(rB), to one in which the electron is 
bound with the wave function χf(rA), while the y-particle effectively has the free particle 
wave function exp[ip·rB].

It is evident then that this kind of transition can take place when the y-particle is initially 
located at values of rB large enough so that λ0(rB) is negligible. Clearly such locations are 
highly improbable and this explains why only a few members of the ensemble will undergo 
transition.

To see what happens to particles starting at small values of rB, let us compute the velocity 
from the guidance condition (which, as we have seen in chapter 3, implies the quantum 
potential). We find

 

(5.20)
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For values of rB small enough so that the perturbed wave function has a much lower intensity 
than the unperturbed one this will be approximately proportional to  
It is clear that such particles start to move outward at a very low velocity, especially those 
initially at small radii. They will speed up as they go outward and will eventually enter the 
region in which the perturbed wave function is dominant. The effective physical state will 
then be one in which a transition has taken place along the lines that we have described. 
Ultimately all the particles in the ensemble will be able to undergo transitions, in this way. 
However, in such an ensemble, the times of transition will be statistically distributed, and it 
is easy to show that this distribution is exactly what is predicted by the usual interpretation 
of the quantum theory.

The above holds only in the approximation in which the perturbation theory is valid. In 
a more exact treatment, e.g. the Wigner-Weisskopf method [4], the initial wave function is 
found to decay exponentially with some mean life-time  It is clear that, depending on the 
initial conditions, some particles will be emitted in times much shorter than  This means 
that the wave function does not give a complete description of the reality of the transition, 
because it has no terms in it to discuss the actual and often short time in which a particle 
approaching the edge of the atom is suddenly ‘swept out’ to become free in an interval 
of time that has no essential relationship to  Clearly the additional concept of a particle 
is needed, alongside that of the wave function, to allow this process to be considered 
ontologically, i.e. as essentially independent of being measured or observed.

A similar situation arises with radioactive decay brought about by barrier penetration. 
For example, the mean-life of the uranium atom is 2×109 years, but once a particle enters 
the barrier, it may go through in a time of the order of 10–22 secs. This speed of the actual 
process is also something that cannot be described solely in terms of the wave function and 
its associated concept of mean-life time.

Finally it should be noted that as in the example of barrier penetration discussed in 
section 5.1 there is still, in principle, the possibility of interference between the initial wave 
function and that representing particles that have undergone transition. (This is, of course, 
as valid in the usual interpretation as it is in our interpretation.)

If the outgoing particle undergoes collisions, however, then it becomes steadily more 
difficult to obtain interference because more and more particles would have to be made to 
participate in just the right way. As in the case of barrier penetration, this would ultimately 
become impossible in practice. Simultaneously the domain of active information would 
narrow down so that the outgoing particle would be affected only by a relatively narrow 
wave packet, while the information in the remaining parts of the wave function would 
become inactive.

5.4 On the possibility of bifurcation points in more complex cases

In the simple example of the Auger-like transition discussed in the previous section there 
are no bifurcation points such as were found in the example discussed in section 5.1. 
However, if we introduce a number of final states, bifurcation points can be obtained.

To illustrate this, let us consider two possible final wave functions of the electron χ1(rA) 
and χ2(rA). These will be assumed to have different energies so that the energies transferred 
to the y-particle will be correspondingly different. We will assume that for the wave 
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function χ1(rA), the y-particle will have momentum p1 and velocity υ1 and for χ2(rA) these 
will be respectively p2 and υ2. The perturbed wave function will then be

 
(5.21)

where

G1(rB, t)=S(rB)−S(rB−υ1t)  

and

G2(rB, t)=S(rB)−S(rB−υ2t).  

If the particle is in a region beyond that in which the initial wave function is appreciable 
then, as we have seen earlier, its motion can be treated solely in terms of the perturbed wave 
function. This latter describes what are effectively two wave packets in rB space which are 
multiplied respectively by χ1(rA) and χ2(rA). As shown in figure 5.5, the first packet will 
have reached rB=υ1t, while the second will have reached rB=υ2t. Assuming υ1>υ2, it follows 
that the second packet will be contained in the first, which latter has an advancing region of 
width ΔrB=(υ1−υ2)t, that does not overlap the first packet. If the particle is in this region, then 
the second wave packet (containing χ2(rB) as a factor) will not affect its motion. Therefore 
it can be treated as if the wave function had ‘collapsed’ to χ1(rA)exp[ip1.rB]. However, if it 
is in the region of the second packet, there will still be interference between the two terms 
and we will not yet have a collapse to one term or the other.

 
Figure 5.5: Overlap of wave packets

How is it possible to obtain a definite result? To answer this, we first note that this state of 
affairs is a consequence of our approximation in terms of perturbation theory in which the 
decay of the original wave function is not taken into account. Therefore an indefinite 
stream of outgoing waves is implied.

However, when this decay is taken into account, e.g. by the Wigner-Weisskopf 
approximation, it is found that the wave packets will have durations of the order of the 
mean life-time,  of the original wave function. It is clear that when t is great enough, the 
separation of the packets, (υ1−υ2)t, will be greater than their respective widths  and  
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and therefore the packets will separate. Where they have separated, the particle will be in 
one of these packets, in which case its motion can be treated without reference to the other, 
as we have done in the examples already given here. The effective wave function will then 
be either χ1(rA) exp[ip1rB] or χ2(rA)exp[ip2rB]. In other words we have shown that there are 
two mutually exclusive channels into one of which the particle must enter. And as a simple 
calculation shows, the probabilities of either channel will come out the same as those given 
by the usual interpretation. 

Although the consideration of the finite lifetime shows that the outgoing wave function 
will ultimately give rise to two separate channels (when t considerably exceeds the mean 
lifetime), it is necessary to point out here that this can happen in much shorter times if 
the outgoing particle can undergo collisions with other atoms. As an example, suppose 
that the energy of the outgoing particle, E1, corresponding to velocity υ1, is great enough 
to ionise an atom, while that of a particle of energy E2 and corresponding to velocity υ2 
is not. After the collision the part of the wave function corresponding to χ1(rA) will then 
be multiplied by a factor g(z) describing the free state of the particle with coordinate z 
liberated from the atom in which it was originally held, while χ2(rA) is multiplied by g0(z) 
corresponding to the original bound state of this particle. Clearly, in a relatively short time 
these wave functions cease to overlap, and subsequent collisions with them bring about a 
multiplication of channels in the way described in section 5.2. In principle this can happen 
in times of the order of that required for collisions (perhaps something like 10–12 secs). 
Therefore even if the period of decay is long, we will still generally obtain a separation of 
channels. However, if no collisions take place, the channels will not separate and we will 
have interference between the two components of the wave function χ1(rA)exp[ip1rB] and 
χ2(rA)exp[ip2rB]. This interference is indeed an example of the EPR correlation (which we 
shall discuss in detail in chapter 7). It is an unavoidable prediction of the quantum theory, 
both in the usual interpretation and in ours.

Whether the channels are formed by separation of wave packets over times of the order 
of  or by collisions, it seems evident that there must be some limiting points or curves 
which divide the initial conditions of the particles that will enter one channel from those 
that will enter the other (as happened in the case of barrier penetration). Generally speaking 
however these will be in the overall configuration space and may be quite complex in form. 
The possible complexity will increase rapidly as we consider more and more stationary 
states, especially if we go to wave functions of higher angular momentum. In the latter 
case the stationary states will be characterised, as we have seen in chapter 3, by a set of 
circular motions, in contrast to the s-state which is characterised by a set of points at which 
the particle is at rest.

The general behaviour described above is similar to that obtained in the study of 
non-linear equations whose solution contain what are called stable limit cycles [3]. As 
we have pointed out earlier the equations for the particle motion in our interpretation are 
likewise clearly non-linear. It is implied by the discussion above that the solutions also 
have something like stable limit cycles except that a certain generalisation of this concept 
is needed here. Thus, as we have already indicated, for p-states, the stable limit cycles 
would be a set of circles. The difference from the usual kind of non-linear equation is that 
for each stable motion we have a whole set of possible limit cycles rather than just a single 
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cycle. Each quantum state thus corresponds to a different set of limit cycles and a transition 
corresponds to an orbit going from one of these to another.

In this discussion the s-states should be regarded as degenerate cases of limit cycles 
which reduce to single points in rA space and simultaneously to outgoing orbits in rB 
space.

Finally it must be emphasised that our equations for the particle motions differ from 
the non-linear equations that have commonly been considered thus far, in that the forces, 
as determined by the quantum potential, are not preassigned functions either of external 
variables or of the particle coordinates. Rather, as was brought out in chapter 4, they depend 
on a quantum field of active information ordered in the configuration space which involves 
the whole system in a way that cannot be analysed solely in terms of relationships between 
the particles. It is this feature which makes it possible for such dramatically different limit 
cycles to emerge as a result of the evolution of the wave function even for simple systems. 
The fact that the activity of the quantum field does not necessarily fall off with the intensity 
of the wave is also crucial for this behaviour, since without it we could not have had 
some transitions taking place almost immediately even when the perturbed wave function 
was very weak. It is clear then that the new features of the quantum potential described 
above are principally what are behind the ability of our extension of Newton’s equations 
of motion to comprehend the new quantum properties of matter. This brings out in further 
detail the point that we made in chapter 3, section 3.1, i.e. that classical physics does not 
follow from the form of Newton’s equations alone, but also requires certain restrictions on 
the forces that appear in these equations. When, as is the case of the quantum potential, we 
go beyond such restrictions, an entirely new kind of physical law is implied.

5.5 The quantum process of ‘capture’ of particles (fusion-fission)

We now go on to extend the results of the previous section to the case of capture of an 
electron by an atom. This, combined with the discussion of ionisation that we have just 
given, will enable us to bring out how quantum mechanics implies the possibility of the 
formation of objective wholes as well as their dissolution into relatively independent parts 
and sub-wholes. As we saw in chapter 4, this is one of the principal new properties of 
matter implied by quantum theory. 

We shall discuss this process as a kind of inverse of the one that was treated in the 
previous section. We consider an atom on which is incident a particle with a plane wave 
function exp(ikz) implying motion in the z-direction only. In order to enable the atom to 
capture this particle so as to form a new combined system, it is necessary that there be 
something to carry away the energy that is given off. As happened in the case of ionisation, 
this will be done by an additional particle with coordinate y.

Let us suppose there are further particles in the atom with coordinates designated by ξi. 
The initial state of the atom will then be represented by  The combined 
initial wave function for the entire system is therefore
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(5.22)

Because of the interaction between these particles, this combined wave function will 
change. We shall assume that the main possibility for change is the introduction of a ground 
state, in which the x-particle has been captured, while the y-particle has been released. This 
wave function will thus be  The y-particle will then have a wave 
function whose typical component is exp[ip·y−(ip2/2m)t]. The net change of the overall 
wave function can then be written as

 
(5.23)

We assume that this process can be treated by perturbation theory in a way similar to what 
was done with ionisation in the previous section. Of course the details will be considerably 
more complex because the outgoing wave cannot in this case be restricted to a spherically 
symmetric form. We shall however give only the general results here. The essential point 
is that after some time, the outgoing wave takes the form

 
(5.24)

where θB is the azimuthal angle of the outgoing particle relative to the direction of the 
incident particle. If the initial conditions are such that the particle enters this outgoing 
wave, then there is no overlap with the incident wave function. The quantum potential 
acting on the particle will then be the same as if the incident wave function were not present 
and Δψ were the whole wave function. It is clear that in this case the incident particle will 
have been captured into a ‘state’ with wave function  corresponding to a stable 
limit cycle of the kind discussed in the previous section. At the same time the y-particle 
will be moving outward carrying away the excess energy. The probability of capture can 
be calculated by averaging with the probability density P=|ψ|2 and this will give the same 
result as is obtained in the usual interpretation.

Initially the combined system has a product wave function implying, as we have seen 
in chapter 4, that the two subsystems represented by x and (y, ξi) respectively behave 
independently. If the initial conditions were such that the y-particle did not enter the 
outgoing wave, the effective wave function would have ended up as essentially unchanged 
so that the subsystems would remain independent after collision. However, if the y-particle 
did enter the outgoing wave, then we will have formed a new whole with wave function 

 along with the y-particle, which is now a new independent part. So what 
happened is that we began with one whole which included the ξi-particle and the y-particle, 
and along with it was an independent particle represented by x. This whole broke up, but 
at the same time a new whole was formed with different constituents. This process could 
be described picturesquely by saying that the original whole had undergone ‘fission’, while 
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the product atom had undergone ‘fusion’ with the x- and ξi-particles. Through the fission-
fusion process we have been able to describe objective changes in the wholes that are 
present [5].

To come back to our description in terms of active information, we could also say that 
the original atom was characterised by a certain common pool of such information which 
broke up and reformed into a new pool that included the x-particle instead of the y-particle. 
We emphasise once again that this process of forming and dissolving wholes is essentially 
quantum mechanical. For it is only through the existence of such pools of information 
which are not expressible solely in terms of relationships of the actual particles that the 
notion of an objective whole can be given meaning. In contrast, as we have said earlier 
in classical physics there is no such objective significance to the whole, the latter can at 
best be regarded as a convenient way of thinking about what is considered to be in reality 
a set of parts. Quantum mechanics thus implies a new kind of process; i.e. the collection 
and dissolution of wholes. The language of ordinary quantum mechanics already tends to 
suggest this, in so far as it treats the quantum state as an unanalysable whole. However, as 
we have already suggested in earlier chapters, in our interpretation this wholeness becomes 
more intuitively intelligible because this interpretation highlights the new features of the 
quantum theory that bring it about. 

5.6 Summary and conclusions

The essential point of this chapter was to demonstrate with the aid of a number of typical 
examples that the transition process can be treated ontologically, i.e. as having no essential 
relationship to measurement or observation. We showed that in such a transition the wave 
function effectively splits so as to define a number of separate channels. The quantum 
potential was determined only by the channel that the particle actually enters. The channel 
entered by the particle depends on the initial conditions which are distributed statistically 
in an ensemble with P=|ψ|2. From this it follows that the probability of obtaining a certain 
result is the same as in the usual interpretation.

In effect everything happens as if the wave function ‘collapses’ to the final result, while 
no collapse actually takes place. The channels not occupied by the particles correspond 
to inactive information. We showed that if the particles make collisions with additional 
systems, there is a constant narrowing down of the domain in which the wave function 
can significantly affect the quantum potential at the location of the particles. From this it 
follows that the channel entered by the particles eventually becomes irreversibly fixed, so 
that it cannot be undone.

An analysis of the behaviour of the particle orbits shows that there are bifurcation points 
dividing those orbits entering one channel from those entering another. Near these points, 
the motion is highly unstable and, indeed, chaotic in the sense of modern chaos theory. 
Stationary states then correspond to an extension of the concept of stable limit cycles which 
is found in the theory of non-linear differential equations.

Finally we discuss the process of formation and dissolution of wholes (fission-fusion). 
This brings out the possibility of an objective ontological wholeness and of a distinction 
between states of such wholeness and states in which the parts or sub-wholes behave 
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independently. We understand this through the formation of common pools of information. 
This information brings about nonlocal interaction, but quantum wholeness implies even 
more than this. For it arises out of the quantum field which cannot be understood solely 
in terms of preassigned properties and interrelationships of the particles alone. Rather the 
whole is presupposed in the quantum wave function and it is the active information in this 
wave function that forms and dissolves wholes.
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 Chapter 6  
Measurement as a special case of quantum process

As pointed out in chapter 2, in the conventional interpretation of the quantum theory (which 
is basically epistemological in nature) measurement plays a key role in the sense that 
without it the mathematical equations would have no physical meaning. In our ontological 
interpretation, however, we have started with a treatment of the individual, actual process, 
e.g. a particle penetrating a barrier, undergoing transition between stationary states etc. 
Evidently it is necessary to deal with the measurement process in essentially the same 
way; i.e. as a special case of quantum processes in general. What is particularly significant 
in a measurement process is that from a large scale result that is observable in a piece of 
measuring apparatus, one can infer the state of the observed system, or at least the state in 
which it has been left after the measurement process is over.

In this chapter we shall treat the measurement process in some detail and show how it is 
to be understood ontologically. We shall first discuss the general principles of this process. 
We shall show that the essential new feature of quantum measurement is that there is 
mutual and irreducible participation of the measuring instrument and the observed object 
in each other. As a result, any attempt to discuss this process as measuring ‘a property 
of the observed object alone’ will not be consistent with our interpretation. Rather we 
say that the result of a measurement is a potentiality of the combined system and can be 
determined only in terms of the properties of the particles, along with the wave function 
of the combined system as a whole. On the basis of this notion, we shall go into several 
examples that help illustrate the principles involved and clarify some of the puzzles to 
which these examples give rise in the conventional treatment. 

6.1 Brief treatment of the measurement process

In treating measurements ontologically we shall for the sake of convenience divide the 
overall process into two stages. In the first stage the measuring apparatus and the observed 
system interact in such a way that the wave function of the combined system breaks into 
a sum of non-overlapping packets, each corresponding to a possible distinct result of the 
measurement. In the second stage this distinction is magnified by some detecting device, 
so that it is directly observable at the large scale level.

In the first of these stages, the wave function can be treated in the same way as was done 
in the discussion of von Neumann’s approach given in chapter 2, section 2.4. As was done 
there, we let the initial wave function be represented by

 
(6.1)

where ψn(x) are the possible eigenfunctions of the operator O that is being measured. We 
also let the initial wave function of the measuring apparatus be represented by  which 
corresponds to a suitable wave packet (describing, for example, the position of a pointer). 
The initial wave function of the combined system is then
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(6.2)

As a result of the interactions, this wave function is modified and it becomes

 
(6.3)

where the On are the eigenvalues of the operator O. After the time Δt when the interaction 
is over, we obtain

 
(6.4)

If the interaction is strong enough to satisfy equation (2.5), then the   
will represent distinct and non-overlapping packets that correspond to the various possible 
results of the measurement.

It is clear from (6.3) that during the period of interaction, the various components of 
the wave function will overlap and interfere. The amplitude of the wave function will then 
become a very complex and rapidly fluctuating function of x and y and, of course, the time 
as well. The quantum potential will evidently be correspondingly complicated so that the 
motion of the particle becomes difficult to predict in much the same way as happened in 
the case of transitions between stationary states discussed in chapter 5. However, when 
the wave packets have definitely separated, the apparatus particle y must have entered one 
of them, say m, in which it remains indefinitely, since the probability of being between 
packets is zero. From then on, the action of the quantum potential (and, of course, the 
guidance condition) on the particles will be determined only by the packet  
because all the other packets (which do not overlap this one) will not contribute to it. So at 
least as far as the particles are concerned, we may ignore all the other packets and regard 
them as constituting inactive or physically ineffective information in the sense discussed 
in chapter 5. Here it must be emphasised that, as was shown for the transition processes 
for example, this will still happen even when there is some spatial overlap between ψm(x) 
and the remaining packets ψn(x). This is because of the multidimensional nature of the 
wave function of the combined system, which implies that the product,  and 
any other product, say  will fail to overlap as long as one of its factors fails to 
overlap, even though the other factor will still have some overlap.

It is clear that measurement has in effect been treated as a particular case of quantum 
transition even though one of the systems concerned, i.e. the apparatus, is considered 
to be macroscopic. Indeed the combined system makes a transition from an initial state 

 to one of a set of final states,  A simple calculation will show 
that the probability of this transition is just |Cn|

2 (as it would be also in the conventional 
interpretations). We may indeed use the language of chapter 5 and say that each of the 
possibilities  constitutes a kind of channel. During the period of interaction the 
quantum potential develops a structure of bifurcation points, such that apparatus particles 
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initially on trajectories leading to one side of these points enter, for example, the mth 
channel, while the others do not. Eventually each particle enters one of the channels to the 
exclusion of all the others and thereafter stays in this channel. When this has happened the 
‘observed particle’ will behave from then on as if its wave function were just ψm(x), even if 
ψm(x) and the rest of the ψn(x) should still overlap. The fact that the apparatus particle must 
enter one of the possible channels and stay there is thus what is behind the possibility of a 
set of clearly distinct results of a quantum measurement.

Nevertheless, as was brought out in chapter 5, the ‘inactive’ packets not containing 
the particles need not at this stage remain permanently inactive. Rather it is still possible, 
in principle, to bring the apparatus packet, say  and  together so they will 
interfere. In this case the quantum potential may now be affected by the previously inactive 
packets and so the production of distinct and separate results of the measurement process 
is not yet irrevocable. 

As shown in chapter 5, the irrevocability of such a process is established only when 
the apparatus particle interacts with a macroscopic system of particles. In the case of a 
measurement, this will be the detecting device which amplifies the results to a scale large 
enough to be directly observed. Such a detecting device will of course contain a very 
large number, N, of particles with coordinates zi. When this interacts with the apparatus 
particle, y, its wave function λ(z1…zN) will change. To each distinct state, n, of the apparatus 
variable, there will be a corresponding state χn(y, z1…zN) of the combined system of the 
apparatus and the detector. This wave function will then be

 

 

We have assumed that the effect of this interaction on the observed particle is negligible. 
In general however, some correlation of the y and the set {zi} is to be expected. But 
within the context under discussion this will have no appreciable effect on the meaning 
of the experimental results. For most purposes we can therefore simplify the treatment by 
writing

 
 

where λn(z1…zN) represents the wave function of the detector corresponding to  for 
the apparatus variable.

In the above we have allowed scope for the apparatus packet  to change to some 
other form  as a result of interaction with the detector. In general, conditions can 
evidently be arranged so that this change will not produce any overlap between the  
corresponding to different values of n. Even if it were possible, either naturally or by 
some special experimental arrangement for these to come to overlap, any given  will not 
overlap with the other λn in the configuration space of the detecting device. Therefore such 
overlap of the  will not alter the quantum potential acting on the x- and y-particles. This is 
because the particles of the detecting device will now be in distinct channels in the overall 
configuration space of the detector. Moreover since these channels will be so complex 



82 The undivided universe

and multiple in nature, it will not be possible to arrange them to overlap in the future, 
while the probability for this to happen spontaneously will be negligible. The channels 
corresponding to distinct possible results of a measurement are in this way established 
essentially irrevocably.

The above treatment discusses measurement in terms of von Neumann’s analysis in 
which one introduces an interaction between measuring apparatus and observed system that 
correlates the value of the observed result directly to the position of a suitable apparatus 
variable. However, there is a wide class of measurement in which the observed result is, 
in the first instant, correlated to the momentum of such an apparatus variable. With the 
passage of time the resulting motion of the apparatus variable then leads to a separation of 
the apparatus packets corresponding to different values of the final state of the observed 
system.

A typical example of this sort of measurement is the Stern-Gerlach experiment. Suppose 
we have a beam of atoms with coordinate y, each containing an electron with coordinate 
x. Let the orbital angular momentum of the atoms be ħ. Relative to any convenient z-axis 
there are three possible quantum fields ψj(x) where j=0, 1, −1 corresponding to the different 
values of the z-component of the angular momentum. The first stage of the measurement 
is achieved by letting the atoms pass through an inhomogeneous magnetic field in the 
z-direction. Before the atoms reach this field, the wave function of the combined system is

 
(6.5)

where  represents the initial packet corresponding to the location of the atom.
While the atoms are passing through the magnetic field, the interaction Hamiltonian is 

going to be approximately

 
(6.6)

where (∂B/∂z)0 is the value of the gradient of the magnetic field at the centre of the beam 
and Lz is the z-component of the angular momentum operator. Recalling that the interaction 
is impulsive so that all changes of the wave function due to the rest of the Hamiltonian 
can be neglected during the interaction, we obtain for the wave function immediately after 
passing through the inhomogeneous magnetic field,

 
(6.7)

where Δt is the time spent in this field. Thus the apparatus packet obtains a momentum 
proportional to the angular momentum of the atom. To make a measurement possible, the 
momentum transferred to the atom, (∂B/∂z)0 Δt must evidently be much greater than the 
width δp of the packet.
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After this interaction takes place, the packets will begin to separate. With the 
approximations made here, the spread of the packet can be neglected. We then obtain, after 
a suitable time t,

 
(6.8)

where p0=(∂B/∂z)0 Δt. Clearly the three packets will eventually separate after which they 
may be detected, for example, at a screen.

From here on the treatment goes through in essentially the same way as with the von 
Neumann type of measurement interaction. Thus, while the packets are separating but still 
overlap, there will be a complicated and rapidly varying quantum potential containing 
bifurcation points of more or less the same kind that has been discussed in earlier examples. 
According to the initial position of the x- and y-particles, the system will enter one of these 
packets and, as explained earlier, this will determine a channel in which it remains from 
then on. The other two channels will then have no effect on the quantum potential (or on 
the guidance conditions) acting on the particle. They can therefore be ignored. However, as 
we have already pointed out in several contexts, it is still possible for the atomic quantum 
fields  to be made to overlap, for example, with the aid of suitable magnetic fields. 
The corresponding channels are thus not yet irrevocably determined.

The next stage is to allow the atoms to enter a detecting device. For example, this may 
be done by having each beam enter an ion chamber. As the atom goes through the chamber 
it will ionise molecules of the gas that are present there. Let the relevant coordinates of 
these molecules be denoted by  (where  represents the s molecule in the nth 
chamber). If an electron is liberated, it will be accelerated by the applied field of the ion 
chamber as shown in figure 6.1. This will initiate a cascade giving rise ultimately to a pulse 
containing so many electrons that it can be observed by ordinary means (e.g. a perceptible 
deflection of a galvanometer).

To discuss the behaviour of the wave function Ψ of the total system, let  
represent the state in which all the counters are unfired and let  represent 
the state in which the nth counter has fired and the others have not. The total wave function 
just before the particle enters a counter is

 

 

where
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Figure 6.1: Discharging ion chamber

After one of the counters has functioned this becomes

 

 

It is clear that in order to obtain interference of the various states of the x-particle, it will be 
necessary that the quantum fields of the total system of z-particles in the fired state overlap 
those in the unfired state; even while the cascade is developing, it is evident that there will 
be no such overlap. And after all the cascade particles have reached the electrodes and 
flowed along the wire to a very different place, the possibility of establishing an overlap 
becomes even less likely than during the cascade.

Along the lines that we have described above, we can see that it is in principle possible to 
follow the measurement process from the original atom, through the cascade, and to show 
how what was an essentially quantum mechanical process gradually turns into a directly 
observable pulse. We may here anticipate the results of chapter 8, where it is shown that 
large scale movements such as that of the pulse which reaches the electrodes of the ion 
chamber can be described by collective coordinates for which the WKB approximation is 
valid. This is what justifies us in saying a quantum distinction of states of different angular 
moment is eventually made classically manifest and therefore observable in the usual way 
which requires no further special analysis.

At this stage we can say that everything has happened as if the overall wave function 
had ‘collapsed’ to one corresponding to the actual result obtained in the measurement. 
We emphasise, however, that in our treatment there is no actual collapse; there is merely 
a process in which the information represented by the unoccupied packets effectively 
loses all potential for activity. Or as we have put it in chapter 5, the range of potential 
activity of this information is spontaneously narrowed down in essentially the same way 
as happened with transition processes. It follows that in this regard measurement is indeed 
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just a special case of a transition process in which the two systems interact and then come 
out in correlated states. It is this correlation that enables us, from the observed result, to 
attribute a corresponding property to the final state of the observed system.

In the transition process that takes place in a measurement, it is clear that (as happens 
indeed in all transition processes) there is no need to place any ‘cuts’ or arbitrary breaks in 
the description of reality, such as that, for example, introduced by von Neumann between 
the quantum and classical levels (see chapter 2). In fact we have given what is, in principle, 
a detailed account of the whole process of measurement which is not restricted to the 
phenomena alone as Bohr requires (while nevertheless retaining a wholeness similar to that 
of Bohr in certain ways which will be discussed in more detail later).

6.2 Loss of information in the unoccupied wave packets

For those who are accustomed to the conventional interpretation of the quantum theory, 
the notion of empty wave packets arising naturally in transition processes and artificially 
in measurement processes may not seem to be acceptable, even though we have shown 
that they constitute inactive information that will never have any subsequent effect on the 
particles.

This objection probably arises mainly because the conventional interpretation assumes 
either tacitly or explicitly that the wave function corresponds to the actual state of the 
system and as such constitutes the basic description of reality, at least in so far as this latter 
can be described in any way at all. Therefore it could be felt that the empty packets, which 
also satisfy Schrödinger’s equation, constitute a vast mass of ‘bits of reality’ that are, as 
it were, ‘floating around’ interpenetrating that part of reality which corresponds to the 
occupied packets.

In our interpretation, however, we do not assume that the basic reality is thus described 
primarily by the wave function. Rather, as we have stated in chapter 3, we begin with 
the assumption that there are particles following definite trajectories (and as we shall see 
in chapter 11 we can also incorporate ordinary fields such as the electromagnetic in this 
general approach). We then assume that the wave function, ψ, describes a qualitatively new 
kind of quantum field which determines the guidance conditions and the quantum potential 
acting on the particle. We are not denying the reality of this field, but we are saying that its 
significance is relatively subtle in the sense that it contains active information that ‘guides’ 
the particle in its self-movement under its own energy. The behaviour of the particles is 
profoundly affected by this field so that it has fundamentally new features relative to those 
of classical physics. The effects of the quantum field will, however, become manifest only 
at the classical level in the collective movement of large numbers of particles. In the latter, 
the WKB approximation will generally hold and the quantum fields can be neglected. So 
ultimately all manifestations of the quantum fields are through the particles.

We may make an analogy here to human relationships in society. The most immediate 
and concrete reality is the collection of individual human beings. In so far as these are 
related by pools of information, this latter will become manifest in the behaviour of the 
human beings. The behaviour both of the individual and of the society depend crucially 
on this information (rather as happens with the particles of physics). The information itself 
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is held at some very subtle level which does not show directly and which has negligible 
energy compared with that involved in the physical movements of the people. To complete 
the analogy we might surmise that perhaps the information in the wave function is likewise 
contained at a more subtle level of negligible energy in a way that has not shown yet and 
that we have not thus far been able to study.

In this analogy we can see that information is constantly losing its potential for activity. 
For example, people may see that some of it is irrelevant or wrong, while a great deal may 
simply be forgotten. Even if the information is preserved in books or on discs, most of 
these latter eventually become more and more difficult to access, for example, by being 
sent to depositories and ultimately by being shredded. Other information is simply lost 
by dispersal, for example, by the spread of sound waves and radio waves. In so far as this 
information can no longer affect human beings (or their proxies in the form of computers) 
it has lost its potential for activity.

It is clear then that nothing is more common in ordinary experience than for information 
to lose its potential for activity. If we accept that the particle is what responds to information 
at the quantum mechanical level, it is clear that there is no serious problem with the empty 
wave packets. The essential point is that information is immensely more subtle and less 
substantial than the systems on which it acts. If we give up the idea that the wave function 
is what comes closest to describing that which may be called the substance of reality, 
then the loss of potential for activity will be quite a natural and, indeed, even an expected 
feature.

Another reason why many may have found it difficult to accept our ontological 
interpretation is that the wave function is all that is used in statistical calculations, which 
indeed makes no mention of the particles, except to say that the statistics yield the frequency 
with which they may be registered in specified experiments. Since particles seem to play no 
part in the calculations, and since the latter are what occupy the major part of the attention 
of physicists, it may be felt that the wave function (which corresponds to the quantum 
state) is in essence what the theory is all about. Therefore to have inactive parts of the wave 
function may seem unacceptable.

However, if we think further about our analogy to the behaviour of human beings we 
may note, for example, that in the statistical behaviour of people moving on roads with signs 
that inform them, their behaviour could in certain cases be calculated from the information 
implied by the signs without the need for a detailed description of the movement and 
activity of the human being as a whole, e.g. including his muscles, his senses, his brain 
and nervous system etc. Similarly it need not be surprising to discover that the statistical 
behaviour of the particles of physics can be calculated from the information in the wave 
function without knowledge of the detailed constitution of the particles themselves.

In both cases the fact that a quantity provides a complete basis for statistical calculations 
does not imply that it also provides a complete basis for an ontology.

6.3 Quantum properties not generally attributable to the observed system alone

The very notion of a measurement implies, as has been explained earlier, that we are using 
the macroscopic observable results of the operation of a measuring instrument to attribute 
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some property to the object itself. However it can easily be seen that in what is called 
a quantum measurement, such an attribution is not in general possible. For during the 
interaction between object and measuring instrument, there is the linear combination (6.4) 
of wave functions. It follows that through this period, Δt, the two systems are ‘guided’ 
by a common pool of information implying a quantum potential that connects them in a 
nonlocal way. As pointed out in section 6.2, the orbits of both particles are then strongly 
correlated and yet highly unstable. Given that we always start with a statistical ensemble 
P=|ψ|2 which fluctuates at random from one experiment to the next, there will evidently 
be no way to predict or control in each individual case which channel the particle will 
enter (even though this motion is determinate in itself). When the interaction is over, 
the channels will be separate and the information in the unoccupied channel will, as we 
have already seen, become inactive, leaving only the occupied channel with its quantum 
potential. The wave function, and therefore the effective quantum potential, will then be 
profoundly altered (e.g. from a z-component of angular momentum zero to a z-component 
of ħ). The apparatus particles will also have been correspondingly altered (e.g. one of the 
counters going from the unfired to fired state). It is clear then that we are not ‘measuring’ 
a state that has already been in existence. Rather the apparatus and the observed system 
have participated in each other, and in this process they have deeply affected each other. 
After the interaction is over we are left, as already pointed out in the previous section, with 
a situation in which the states of the two are correlated, in accordance with the channel that 
the particles have actually entered.

In certain ways the above behaviour is strongly reminiscent of Heisen-berg’s notion 
of quantum properties as potentialities belonging both to the observed system and the 
observing apparatus, rather than being just intrinsic properties of the observed system 
alone. Which potentiality is actualised depends on the observing apparatus as well as 
on the observed system. For example if the Stern-Gerlach apparatus is oriented in the 
z-direction, we actualise the potentiality of the atom to come into a state of well-defined 
angular momentum in this direction. On the other hand if the apparatus is oriented in the 
x-direction we actualise a different set of potentialities for the angular momentum now 
to be well defined in the x-direction. Evidently the simultaneous actualisation of the two 
sets of potentialities is mathematically impossible and this corresponds to the physical 
impossibility of simultaneously orienting the Stern-Gerlach apparatus in both of these 
directions.

One can here make use of the analogy of the seed discussed in chapter 2, section 2.3. 
The different possible orientations of the apparatus correspond to different environments 
of the seed, which in turn lead to different forms of the plant. In the case of particles, we 
can see how changing the orientation of the apparatus changes the quantum potential and 
how this in turn changes the possible states in which the system can be actualised. In this 
way we obtain an explanation of Bohr’s principle of complementarity, which states that the 
experimental conditions needed for measuring a given physical quantity are incompatible 
with those needed to measure another one, when the operators corresponding to these 
quantities do not commute. 

What this all means is that quantum properties cannot be said to belong to the observed 
system alone and, more generally, that such properties have no meaning apart from the total 
context which is relevant in any particular situation. (In this case, this includes the overall 
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experimental arrangement so that we can say that measurement is context dependent.) 
The above is indeed a consequence of the fact that quantum processes are irreducibly 
participatory in the way we have explained here.

Even in classical physics, measurement may strongly disturb the observed system and 
introduce large changes in its conditions. Moreover it is possible to have situations in 
which this disturbance is unpredictable and uncontrollable, for example, if the interactions 
are such as to bring about chaotically unstable motions. Since the initial conditions of the 
observing apparatus can never be determined exactly we may have an unpredictable and 
uncontrollable disturbance of a significant magnitude even in these classical situations. 
Therefore we can evidently have classical conditions in which faithful measurements are 
not possible because there is no way to correct for, or otherwise take into account, the 
effects of the disturbance arising in the measurement process.

However, at the quantum level something much more radical is involved in this. For 
the interactions which now depend on the quantum potential can introduce large nonlocal 
connections between all the constituents of the total system which are not preassigned 
functions of the properties of this system. This is as if the basic law of interaction of all the 
parts were changing in the process in which the observed system and observing apparatus 
come into contact. The result is therefore, in effect, a transformation of the very nature of 
the system as a whole and of all its constituents. In the quantum case, the participation 
therefore is of a deeper and more fundamental nature than it is classically. Indeed in 
classical physics no matter how much the observed particle is disturbed fundamentally, its 
basic laws of interaction remain the same (being expressible, for example, as preassigned 
functions of all the particle variables). Therefore the basic properties of the particles may 
be regarded as intrinsic, no matter how strong the interaction may be. But in the quantum 
theory such properties can, as we have already pointed out, have meaning only in the total 
relevant context.

The nearest classical analogy to the above situation arises in connection with the free 
energy of a thermodynamic system

F=E−TS.  

In the above, E is the intrinsic energy of the system, but the actual energy available in an 
isothermal process is δF=δE−TδS, where δS is the charge of entropy. But TδS is equal to 
the heat which flows into the bath in an isothermal process. The free energy is therefore 
not an intrinsic property of the system, but one that has meaning only in the context of a 
thermal bath with which the system interacts. The analogy to the quantum theory is clear, 
but it must be emphasised that the context dependence of properties in quantum mechanics 
is much more radical and far reaching than it is in thermodynamics.

However, apart from the field of thermodynamics, the notion of properties that are not 
intrinsic but are inherently dependent on a total context has actually been suggested to 
play a fundamental role in cosmology through the Mach principle. This states that basic 
properties of a particle, such as mass, depend on some form of collective feature of the 
general distribution of matter which includes indefinitely far off systems. And as we 
have seen, the quantum properties imply something similar, but far more widespread and 
pervasive, in the sense that measured properties are not intrinsic but are inseparably related 
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to the apparatus. It follows then that the customary language that attributes the results of 
measurements, e.g. momentum and angular momentum, to the observed system alone can 
cause confusion, unless it is understood that these properties are actually dependent on the 
total relevant context.

For example, the actual momentum of the particle is given by  but this evidently 
depends on the wave function. And as we have seen earlier, the latter may either correspond 
to a pool of information common to many particles or may depend on distant features of the 
environment such as a slit system. It is clear then that, as we shall bring out in more detail 
presently, the momentum of the nth particle pin=∂S/∂xin is not an intrinsic property of that 
particle alone, but can only be understood in relationship to other particles and to all the 
relevant features of the environment.

In this interpretation there is one property that is intrinsic and not inherently dependent 
in this way on the overall context. This is the particle position, x. It is evidently intrinsic 
because we have defined it in a way that is conceptually independent of the wave function. 
Moreover it is intrinsic also in the sense that it can be measured without being altered. 
This can be done, for example, by introducing an interaction between the particle and the 
observing apparatus in which the interaction Hamiltonian is a function that is proportional 
to the position, xi, itself. In equation (2.3), we may therefore write

O=x.  

Because x is a continuous variable, we can write the initial wave function

 
(6.9)

The final wave function is

 
(6.10)

If δy is the width of the packet  this measurement will make possible an observable 
distinction between values of ξ differing by δx=δy/λ1Δt. Recalling that this is an impulsive 
measurement, the change of x resulting from the original momentum possessed by the 
particle can be neglected. Moreover the wave equation during the interaction is

 
(6.11)

implying that the only change is to shift  to  It may be assumed with 
sufficient generality that  is real so that this term will not introduce any change in the 
momentum of the x-particle, pi=∂S/∂xi. It follows that the position of the x-particle does 
not change in this measurement. It is therefore possible to attribute this position variable 
to the particle itself.
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However, while the position has not been changed in the measurement, the wave function 
has in general been changed because the interaction with the measuring apparatus can bring 
about a new wave function that can be much more localised in x-space than the original 
one was. Since all other properties of the electron depend as much on the wave function as 
they do on the position of the particle, the measurement is still participating in an essential 
way. Therefore even though the particle position has been determined ‘faithfully’, that is 
without changing it, this is not true of the other properties. With regard to the latter we still 
cannot in general talk of a measurement as something which simply establishes what the 
state of the observed system is. Therefore while the position of the particle considered as 
an abstract concept is an intrinsic property, the other properties are, in general, still context 
dependent.

If we try to measure properties other than position, we find that, as we have already 
pointed out, the result is affected by the process of interaction in a way that depends, not 
only on the total wave function, but also on the details of the initial conditions of both the 
particle and the apparatus. To illustrate this we consider a measurement of the momentum 
p. In equation (2.3) we introduce the operator O=p. We then write the initial wave function as

 
(6.12)

The final wave function is 

 
(6.13)

This measurement will make possible an observable distinction between values of p 
differing by δp=Δy/λ2Δt. In effect this process turns the original wave function into wave 
packets of width in momentum space δp and in position space δx=1/δp=λ2Δt/Δy. These 
wave packets do not interfere because they correspond to non-overlapping states of the 
apparatus variable.

It is especially clear in this example how a measurement transforms the whole system 
in a radical way. To illustrate this in more detail, suppose we originally had a narrow wave 
packet in x-space of width δx0. After interacting with the momentum measuring device 
we would have a set of wave packets of width δx=1/δp, where δp is the accuracy of the 
momentum measurement. If δp is very small it is clear that the effect of the measurement is 
to cause the original packet to spread a great deal in position space, in the same operation 
in which it narrows in momentum space. On the other hand if we had originally a broad 
packet in x-space and then measured x to a great accuracy, the effect would be, of course, 
to cause the packet to become very narrow in position space, while it spread out over 
momentum space.

To bring out yet further how the actual particle momentum is generally changed in a 
momentum measurement, let us consider an initial state in which C(p) is chosen so that 
the overall wave function is real (i.e. C(p)= C*(−p)). The original particle momentum 
is  After the measurement the particle will end up in one of the packets 
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corresponding to the mean value of the momentum, pm. The momentum has thus changed 
from zero to something close to pm.

In the ordinary quantum mechanical language of the conventional interpretation, the 
momentum operator commutes with the Hamiltonian for the measurement process, so 
that one would have expected it to be a constant of the motion. How then is a change 
in this momentum possible? The answer is that, in our interpretation, the momentum 
operator is definitely related to the particle momentum only when the wave function is an 
eigenfunction, exp[ip.x], of this operator. More generally, as has already been indicated in 
chapter 3, the actual particle momentum and the corresponding operator are not necessarily 
so closely connected. In such a measurement the interaction can be described by replacing 
Δt by t in equation (6.13). The wave function is then

 
(6.14)

The coefficient of exp[ip·x] becomes  with C(p)= C*(−p). 
The reality condition is no longer satisfied because

 
(6.15)

therefore  is no longer zero. As t changes, the phase will change and this implies 
that the particle is steadily changing momentum, at least until the wave packets cease 
to overlap, when its momentum will be some constant pf (according to what packet the 
apparatus particle actually enters). If we were to work out the quantum potential, we would 
see that this would explain the change of momentum that takes place during the process 
of interaction.

To bring this out in yet another way, let us consider the example of a one-dimensional 
particle in a box of length L. A particular initial wave function of the system may be

 

(6.16)

The initial momentum of the x-particle is evidently zero. The quantum potential is

 

(6.17)
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As pointed out in chapter 3, section 3.5, the quantum potential now contains all the energy 
which, in the conventional interpretation, is attributed to the kinetic energy of the particle. 
In the conventional interpretation, the latter is supposed to be moving back and forth with 
equal probability of being in either direction. Yet if this were actually the case, we would 
not understand why a particle with constant speed, p/m, could cross the regions where the 
probability is zero. Evidently we should not take this picture too literally, but it is better to 
think of it as a figure of speech that people have become accustomed to use. On the other 
hand in our interpretation we have a consistent picture because the particle is at rest and 
there is no force on it because the quantum potential is constant.

After interacting with the measuring apparatus, this wave function splits into two non-
overlapping parts, which may be written as 

 

 

 
(6.18)

But during the interaction there is a period throughout which these two parts overlap. In 
this period, the quantum potential will not be a constant and we see that the particle will 
be accelerated. Ultimately we end up with the particle in one of these packets with equal 
probabilities for both possibilities as in the conventional interpretation.

However, there is a key difference in the language that we use to describe this process. 
In the conventional interpretation it is stated that we have measured the momentum without 
changing it, but in our interpretation, the particle’s momentum has been changed. This 
emphasises that, in a measurement process, we do not in general find an intrinsic property 
of the observed system that was already there. Rather we have an irreducible participation 
of each system in the other. Therefore the momentum is not, as we have already said, an 
intrinsic property. This will be true for all properties other than the position.

We can bring out this character of the momentum further by considering the formulae 
for the mean values of p and of p2. These are
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and

 

 

 is obtained simply by averaging the momentum of the particle ∂S/∂x over the probability 
distribution P(x). But to obtain  it is not enough to consider the average of (∂S/∂x)2. 
We have also to add a term (∂R/∂x)2/R2. This shows that the average value of an operator 
as computed quantum mechanically cannot in general be obtained by averaging the 
corresponding physical property of the particle over the position distribution. We understand 
this as a consequence of the fact that the momentum is not an intrinsic property, but rather 
is inherently context dependent so that it involves the participation of the measuring 
apparatus and the quantum field as a whole.

Quite generally all powers of the momentum operator higher than the first are to be 
understood in a similar way. (Corresponding results can be obtained for the angular 
momentum operator,  

6.4 The meaning of the uncertainty principle

Since our interpretation gives the same statistical distribution of experimental results as 
does the conventional one, it follows that the proofs usually given for the uncertainty 
principle will also be valid in our approach. The meaning of the uncertainty principle is, 
of course, that there is a limit to the precision with which properties can be attributed to 
the observed object on the basis of observed experimental results. Or as Bohr [1] has put 
it, there is an irreducible ambiguity in the meaning of these results as referring to intrinsic 
properties of the observed object.

Because of this ambiguity, it becomes impossible to know from a measurement exactly 
what the state of the particle is and, of course, this implies that we do not know exactly 
how it is going to behave after the measurement. In general, the ambiguities of the actual 
particles’ positions and momenta will be of the order of those present in the spread of the 
wave packets (as we have explained in more detail in chapter 3). But in particular cases 
this may not be so. For example, in a stationary state, the ambiguity in the momentum 
of the particle  was seen to be zero. So if p represents the actual momentum of 
a particle as it moves (or is at rest) in its trajectory, Heisenberg’s principle can in certain 
cases be violated. In our interpretation, however, what Heisenberg’s principle refers to is 
not the actual momentum of the particle itself, but the value of the momentum that can be 
attributed to the particle after what is commonly called a measurement of the momentum. 
And because measurements are actually participatory, these two can differ. Indeed it is 
misleading and even confusing to describe what happens as a measurement (rather as if in 
the observation of the mature plant, we were said to be ‘measuring’ the properties of the 
seed). Perhaps as Bell [2] has suggested, we should call the whole process an experiment 



94 The undivided universe

or even a participatory experiment revealing the potentialities of the system in question. 
(Indeed this participatory feature has already been noted by Wheeler [3] in a different 
context in which, however, there is no way to explain how it comes about.)

Another way of looking at the participatory nature of quantum experiments in which 
something is said to be ‘measured’ can be seen by con-sidering equations (6.2) and (6.3). 
These describe a process in which the wave function is eventually transformed into a set of 
eigenfunctions of the operator that is being ‘measured’, and each eigenfunction is multiplied 
by a corresponding apparatus wave function which does not overlap the others. The 
function actually containing the particles (of both the apparatus and the observed system) 
then selects what will be the effective wave function realising one of the potentialities of 
the overall experimental arrangement, while the empty channels can be neglected.

What we learn from the measurement is not only the value of the operator but also the 
final effective wave function of the observed system. From this we can locate the observed 
particle somewhere in the region in which the wave function of the particle is appreciable. 
The role of the particle is crucial here and it makes it possible for the system to select one 
of the eigenfunctions which will be effective without the need for a collapse.

If in the quantum domain experiments are thus mutually participatory transformations 
how do we understand the ordinary classical experience in which we definitely obtain 
measured results that can be unambiguously attributed to the observed system without any 
question of mutual participation? The answer is, of course, that for measurements carried 
out in the classical limit such participation is negligible, and the transformation of the wave 
function is unimportant because the quantum potential is negligible.

We may bring out this point in more detail by considering a system with wave function 
ψ(x) whose Fourier coefficient is  Let Δx be the width of the wave packet in x-space 
and Δp be its width in p-space. We can then show that in measurements of x and p carried 
out to respective accuracies δx and δp, the change of the wave function will be negligible 
when  and  In this case the participatory character of the interaction 
will not be significant so that the net result is just to provide information (of limited 
accuracy) about the system.

Along the lines leading to equation (6.3) we can say that in a measurement of x, an 
initial wave function

 
(6.19)

goes over into

 
(6.20)

with the accuracy of measurement given by δx=δy/λ1Δt where δy is the width of the apparatus 
wave packet. If we choose  the change of  over the region in which 
ψ(ξ) is appreciable can be neglected and so we obtain to a good approximation
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(6.21)

where  is the value of x at the centre of the particle’s wave packet. This gives

 (6.22)

If the value of y is observed as y0, the value  can be inferred as  Thus by 
observing the value of y we are able to measure  to an accuracy δx=δy/λ1Δt without 
making any significant changes in the observed system.

A similar argument can be made for the measurement of momentum, showing that it is 
also possible to measure the latter without significant participation provided that  
If we then consider the two results together, we obtain

  

We conclude then that the ordinary idea of non-participatory measurement holds only when 
the measurements are much less accurate than the limits set by the uncertainty principle. 
But the conditions for this are the same as those for the classical limit. So it follows from 
our interpretation that in this limit we can ignore the participatory implications of the 
quantum theory in discussing the meaning of measurements.

6.5 On proofs of the impossibility of hidden variables in the quantum theory

Historically the question of an ontological interpretation of the quantum theory was first 
put in the form of asking whether there could be ‘hidden variables’. These, along with 
the wave functions, would determine the results of individual experiments and when 
treated as a statistical ensemble, they would also explain the probability distribution of the 
corresponding ensemble of experiments. (A detailed discussion of the work up to 1973 can 
be found in Belinfante [4].)

Rather early in the development of the theory, work along these lines was strongly 
discouraged by a theorem of von Neumann [5] claiming to show that no distribution of 
hidden variables could account for the statistical predictions of the quantum theory. We 
shall not reproduce his argument in detail here, but we shall merely focus on what we 
regard as the essential point at issue. 

According to the uncertainty principle, the quantum theory implies that there is no state 
in which the values of non-commuting operators are well defined. We can ask however 
whether there are not some additional ‘hidden’ parameters that would select sub-ensembles 
in which such operators could be defined within limits that are narrower than the uncertainty 
principle. An extreme case would be what von Neumann called a dispersionless ensemble 
in which these operators would all have definite values.

Von Neumann [5] gave an argument aiming to prove that if there are such dispersionless 
ensembles then quantum mechanics must be ‘objectively false’. A basic assumption underlying 
his proof is that if A and B are any two operators there is an operator A+B such that
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 (6.23)

where  etc. denote the expectation values of the operator. This relationship does in 
fact hold for the ensembles treated in the quantum theory. But von Neumann assumes that 
it also holds for sub-ensembles. In particular it would have to hold for a dispersion-free 
ensemble in which the values V(A), V(B),…of the quantities associated with the operators 
A, B,… were well defined and therefore equal to the corresponding eigenvalues of these 
operators.

It is easy to see that this requirement cannot be satisfied. We shall discuss this question 
with the aid of an example given by Bell [6], i.e. a particle of angular momentum with the 
eigenvalues of the components Lx, Ly, Lz evidently restricted to ħ, 0, −ħ. We begin with the 
two operators A=Lx and B=Ly, then the angular momentum L′ at an angle of 45° between 
these directions is

 
(6.24)

In the dispersion-free case this becomes

 

 

But there is no way to satisfy this if V(L′)=±ħ and so one might conclude with von Neumann 
that there can be no dispersion-free state.

Bell has given an answer to this. As is well known (and as von Neumann agrees) there 
is really no meaning to combining the results of non-commuting operators such as Lx, 
Ly and L′. For example to measure Lx we need a Stern-Gerlach magnet with a field in 
the x-direction, while Ly and L′ would require fields in their corresponding directions. 
These measurements are incompatible and mutually exclusive. Therefore we cannot 
arrive at an inconsistency in this way. However, the interesting point is that in spite of this 
incompatibility, equation (6.23) is still true for quantum mechanical averages over the three 
separate series of measurements of Lx, Ly and L′ respectively. As we shall make clear later, 
the essential point is that von Neumann had in mind hidden parameters that belonged only 
to the observed system itself and were not affected by the apparatus. The three different 
pieces of apparatuses discussed above constitute three different and incompatible contexts. 
Therefore for an individual experiment there is no reason why Lx, Ly and L′ should be related 
in the way that operators are related. However, as we have already remarked, equation 
(6.23) is still valid for averages over statistical ensembles of experiments even though it 
has nothing to do with individual experiments.

The above criticism of von Neumann applies to non-commuting operators. But if 
the operators commute then it might seem that we can reasonably expect that even for 
individual cases the values of operators will have the same functional relationships as the 
operators themselves. There has been a continuing effort to improve on von Neumann’s 
treatment by considering sets of commuting operators. Among the earlier discussions of 
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this problem we may mention Gleason’s work [7] on the basis of which Jauch and Piron 
[8] thought that they had proved the impossibility of hidden variables. Bell [6] later showed 
that they had merely ruled out a limited class of such variables, i.e. those that are context 
independent. Bell did however point out that this proof did not apply to our interpretation 
because the latter implied context dependent hidden variables.

This latter point does not seem to have been taken seriously by a number of workers in 
the field. Thus Kochen and Specker [9] gave another independent proof which was similar 
in content to that of Jauch and Piron [8], but which had the advantage of using operators 
that could be measured by known physical procedures. However, their proof was rather 
complicated and later Peres [10] gave a much simpler proof for the case of two particles 
of spin one-half. Meanwhile Greenberger, Horn, Shimony and Zeilinger [11] have also 
developed a simple proof along similar lines for the case of three or more particles of spin 
one-half. Mermin [12] summarised these in a very concise way. (For a helpful treatment of 
this phase of the work see Brown and Svetlichny [13].) All these authors use the example of 
commuting operators and are therefore basically similar in their fundamental assumptions. 
We shall therefore carry out the further discussion in terms of Mermin ‘s presentation 
which is the simplest of these.

Mermin begins with a set of commuting operators A, B, C,…. He then points out that 
if some fundamental relation holds as an operator identity, then since the results of the 
simultaneous measurements of A, B, C,…will be one of the sets of simultaneous eigen-
values a, b, c,…of the operators in question, these results must also satisfy

f(A, B, C,…)=0 (6.25)
σ1x σ2x σ1xσ2x 1
σ2y σ1y σ1yσ2y 1

σ1xσ2y σ1yσ2x σ1zσ2z 1
1 1 −1  

Table 6.1: Spin operators

f(a, b, c,…)=0  

independently of the state of the system prior to measurement.
He then assigns to the observables A, B, C,…for an individual system, the values 

V(A), V(B), V(C),…. These values are assumed simply to be revealed by measurement 
of the corresponding operator. Since any measurement must give rise to an eigenvalue 
of the corresponding operator, the value assigned to that operator must be one of its 
eigenvalues. And since any commuting sub-set of the full set of operators can be measured 
simultaneously if the values are to agree with the predictions of quantum mechanics, they 
must be constrained by the relation

f(V(A), V(B), V(C),…)=0. (6.26)

We now go on to consider a system of two particles, each of spin-half, and the nine operators 
shown in table 6.1.
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It is easy to see that the product of the three operators in each row is 1 as is indicated in 
the table. The product of the operators in the first two columns is also 1, but the product of 
the operators in the third column is −1. Moreover it is also easily shown that the operators 
in each row commute, as do those in each column. Therefore the values of the operators 
must satisfy the same constraints as do the operators themselves. Thus we have

         V(σ1xσ2x)V(σ2x)V(σ1x)=1
         V(σ1yσ2y)V(σ1y)V(σ2y)=1
 V(σ1xσ2y)V(σ1yσ2x)V(σ1zσ2z)=1
         V(σ1xσ2y)V(σ2y)V(σ1x)=1
         V(σ1yσ2x)V(σ1y)V(σ2x)=1

V(σ1zσ2z)V(σ1yσ2y)V(σ1xσ2x)=−1.

 

In the above set of equations each value appears twice, once as a member of a row and once 
as a member of a column. The values of all nine operators are ±1. Therefore if we multiply 
all these equations together, the product of the left hand side is 1. On the other hand, the 
product of the right hand side is −1. This contradiction implies that there is no consistent 
way to assign values to all the operators.

This contradiction rules out the model of quantum theory that is proposed by Mermin 
(and, of course, all the other authors who use essentially the same model). The basic 
assumption in this model is that the values V(A), V(B), V(C),…of the set of variables 
specifying the individual system are equal to the results R(A), R(B), R(C),…of measurements 
of the corresponding operators. The above is equivalent to supposing that the beables are 
specified by V(A), V(B), V(C),…and that, as we have already said, the measurement simply 
reveals the values of these beables (as would happen in classical physics).

In our interpretation we do not assign values such as V(A), V(B), V(C),. to the operators. 
For these operators do not correspond to beables in our approach. Rather the beables 
are the overall wave function together with the coordinates of the particles, both of the 
observed system, x, and the of the observing apparatus, y. These beables determine the 
results R(A), R(B), R(C),…of each individual measurement operation. But these results are 
not present before the measurement operation has been completed. Rather they are then 
only the potentialities whose realisation depends not only on x and y, but also on the overall 
wave function of the system and on the interaction Hamiltonian HI between the apparatus 
and the observed object (the latter being determined in principle by the operator O that has 
to be measured). Therefore as we have already pointed out earlier, there is no pre-existing 
quantity that is actually revealed in this process.

The above may be said to give the full meaning of the statement that the results R(A), 
R(B), R(C),…are context dependent. On the other hand in the model used by Mermin, 
the results are assumed to be determined solely by the values V(A), V(B), V(C),…and are 
therefore context independent.

Let us now return to a consideration of Mermin’s treatment. Since we do not assign 
values to operators, there is, of course, no unambiguous way to apply Mermin’s argument 
to our model. What we do instead is to show that the measurement of the operators given 
by Mermin do not lead to contradictory results. This is, of course, sufficient to demonstrate 
that our approach is consistent.
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Strictly speaking we ought to describe by means of some physical arrangement how 
each of the operators above could give rise to the results R(A), R(B), R(C),…of the 
corresponding measurement process. With operators such as σ1x and σ2y, this can be done 
fairly easily by assuming that the particles are far apart and that the first particle undergoes 
a Stern-Gerlach process with the magnetic field in the x-direction, while the second particle 
undergoes a process with the field in the y-direction (see chapter 10). However, with product 
operators like σ1xσ2y no one has yet suggested any physical process that could lead to results 
corresponding to their measurements (which would have to be of a nonlocal kind). Until 
such a procedure is suggested, we cannot demonstrate in detail how our approach leads 
to no contradiction with regard to operators of this kind. However, if we accept Mermin’s 
assumption that such a measurement is somehow possible, then we can show that its results 
will not lead to a contradiction with those operators that may be measured.

Let us first recall with the aid of equation (6.4) and the paragraphs that follow it, that 
any operator O which can be measured will lead to a linear supposition of wave functions 
corresponding to its different eigenvalues On. The active part of the wave function then 
effectively reduces to one of these eigenfunctions determined by the channel that is actually 
entered by the particles concerned. In this way we show that for a general operator O, the 
result of measurement is one of its eigenvalues On, and that the observed system is left with 
the corresponding effective wave function ψn.

We now apply these ideas to the operators in table 6.1. It will be sufficient for our 
purposes to consider the operators in the first column and in the last row. It will also be 
convenient to write

σ1x=A σ1yσ2x=B′
σ2y=B σ1zσ1z=A′

σ1xσ2y=C

together with the identities

C=AB=A′B′.  

It is crucial to our argument to note that although A, B, C commute as do A′, B′ and C, A 
and B do not commute with A′ and B′. If we measure A, the result will be an eigenvalue an 
and the effective wave function will be the corresponding eigenfunction  Because A 
and B commute, if we then measure B the result will be a simultaneous eigenfunction of 
both operators,  It follows trivially that  is an eigenfunction of C corresponding 
to eigenvalue anbn. So if we measure C, the result will be the product anbn. Therefore the 
operator identity C=AB implies the corresponding identity of the results R(C)=R(A)R(B).

A similar argument can be made for the commuting set of operators A′, B′ and C. 
However, it is important to keep in mind that A′ and B′ do not commute with A and B. 
Therefore a different and incompatible measuring apparatus is needed to measure A′ and B′ 
which excludes the apparatus necessary to measure A and B. 

Let us recall here that the results depend as much on the wave function as on the 
apparatus variables y as it does on the variables of the observed system, x. This implies 
that the results obtained for C when the apparatus used to ‘measure’ it can also be used to 
‘measure’ A and B simultaneously, will not in general agree with the result obtained for C 
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using an apparatus that would allow A′ and B′ to be ‘measured’ simultaneously instead. It is 
this point that enables us to avoid the contradiction produced by Mermin. This contradiction 
depends on assuming that the result of C, R(C), is the same in both cases.

As we have already pointed out it may be said that a measurement of C is context 
dependent in the sense that the result obtained when A and B can be measured along with 
it has no necessary relationship to the result that would be obtained for C when A′ and 
B′ could be measured simultaneously. Because A′ and B′ do not commute with A and 
B, the corresponding pieces of measuring apparatus provide contexts that are mutually 
incompatible. It follows then that Mermin’s argument makes assumptions that have no 
place in our interpretation, so that the contradiction to which it leads is not relevant to our 
approach.

Kochen and Specker [9] have argued that the context dependence described above does 
not invalidate the kind of proof of the impossibility of hidden variables that we describe here. 
This is because the results of the quantum mechanical observations should be determined 
by the hidden variables of the combined apparatus and observed system so that the net result 
for the combined system should be predictable in each case. Therefore the argument against 
hidden variables should still go through when applied to the combined system. Our answer 
to this is that when non-commuting operators are measured, different and incompatible 
pieces of apparatus are required. Therefore we have as many combined systems as there 
are relevant sets of non-commuting operators (so that there is no single ‘phase space’ for 
the combined system). This means that one of the basic assumptions underlying the proof 
of the impossibility of hidden variables is not satisfied in our approach.

The context dependence of results of measurements is a further indication of how our 
interpretation does not imply a simple return to the basic principles of classical physics. 
It also embodies, in a certain sense, Bohr’s notion of the indivisibility of the combined 
system of observing apparatus and observed object. Indeed it may be said that our approach 
provides a kind of intuitive understanding of what Bohr [16] was saying. He described 
a ‘measurement’ as a whole phenomenon not further analysable. The description of this 
phenomenon includes a specification of the experimental conditions (which are equivalent 
to the context that we have been discussing), along with a statement of the results. From 
the results and the conditions, one infers the Values’ of the ‘measured’ qualities, but as in 
our approach, it is not implied in Bohr’s treatment that these values correspond to ‘beables’ 
that exist independently of the overall experimental context.

6.6 No measurement is a measurement

In the conventional interpretation of the quantum theory one obtains a certain paradoxical 
quality for the case of what is called ‘negative measurement’, i.e. measurements which 
establish a given result by showing that the only possible alternative is not present. To 
illustrate this sort of paradox, suppose that by means of a Stern-Gerlach apparatus, we 
select a beam of atoms with a definite value, zero, for the z-component of the orbital angular 
momentum. We then do a further Stern-Gerlach experiment with the apparatus oriented in 
the x-direction. The beam splits into two parts corresponding to values of the x-component 
of +ħ and −ħ. The wave function of the atom is then
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(6.27)

where, as shown in equation (6.4),  represents the packet defining the coordinates of 
the atom as a whole, while x is the coordinate of the orbital electron, and a is a factor 
proportional to the strength of the interaction and to the time of its duration.

Let us now suppose that a detector is placed in the beam corresponding to the −ħ 
component of the angular momentum. In terms of the von Neumann interpretation of the 
quantum theory, we can say that if this detector fires, the wave function ‘collapses’ from 
its original form (6.27) to

 (6.28)

And as pointed out earlier, in the conventional interpretation one can regard this ‘collapse’ 
as produced by the interaction with the apparatus.

But suppose that in a certain individual case the detector does not fire. The wave function 
then ‘collapses’ to

 (6.29)

It seems difficult to accept that the failure of this apparatus to operate will produce a 
‘collapse’ of the other beam which, in principle, could be very far away. Or as it has been 
put, it seems that “no measurement is a measurement”.

Thus the paradox arises because a ‘non-event’ (i.e. the failure of the counter to fire) 
precipitates an event (i.e. the collapse of the wave function to a state in which the atom 
never even contacts the counter). It is clear that the assumption that the wave function 
actually collapses is the root of the difficulty.

In the conventional interpretation this is a rather strange behaviour. However, what 
actually happens in this experiment can be explained fairly directly in terms of our 
interpretation. We begin by introducing the relevant coordinates of the detector, which may 
be represented by z1…zn. We have to take into account, not only the wave function λf(zi) 
representing the detector that has fired, but also the wave function λ0(zi) representing the 
detector that has not fired. Before interaction, the wave function for the whole system is

 
(6.30)

After the interaction with the detector the wave function is

 
(6.31)

where  represents the state of the particle as altered by the detector.
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It is clear from the above that we cannot leave out λ0(zi) in equation (6.31) just because 
it describes a situation in which the apparatus has not functioned. Rather, it is evident that 
each part of the wave function contains some component corresponding to the detector, 
whether the detector has acted or not.

In the above wave function not only is there no overlap between   and 
 but also between λ0(zi) and λf(zi). For example, if the detector is an ion chamber, 

then as we have brought out in section 6.1, λ0(zi) corresponds to electrons attached to the 
atoms of the gas, while λf(zi) corresponds to electrons that have cascaded and have been 
collected on the electrode to give rise to a current in a wire leading away from the electrode. 
Clearly the wave function for the electrons in these two cases do not overlap.

Taking the above into account, we can see that there are only two mutually exclusive 
possible configurations of the whole set of particles for which the total wave function is 
not zero. These are:
1. The atom has angular momentum +h and the counter has not fired.
2. The atom has angular momentum −h and the counter has fired.
It follows then that if the counter has not fired, the atom must be in the channel corresponding 
to angular momentum +h, while if it has fired, it must be in the channel corresponding 
to angular momentum −h. In this way a negative result implies that, a measurement has 
nevertheless been made. What happens is that if the atom enters the channel that passes 
through the counter, the latter must fire, while if it enters the other channel, it does not. 
This is the sort of thing that would also happen in classical physics. We emphasise again 
that we do not assume the collapse of the wave function. The particle enters one channel 
and is only affected by the active information of that channel. Thus there is no paradox in 
this conclusion.

As in many other examples treated in this and other chapters, we avoid a paradox in our 
interpretation by giving up the assumption that the wave function is a complete description 
of reality (which is, incidently, what makes the further assumption of collapse necessary). 
By introducing the particle’s position as essential for a more complete description, we turn 
what was a paradoxical situation in the conventional interpretation into one that is quite 
simple and straightforward.

6.7 The Schrödinger cat paradox

Most of the further paradoxes of the conventional interpretations of the quantum theory 
arise from the above described assumption, made especially sharply by von Neumann, that 
the wave function provides the most complete description of reality that is possible. For 
when the wave function is constituted of a linear combination of components, the actual 
state of the system is ambiguous in the sense that there is no way to define it as being in 
one of the components or the other. The process by which the system ‘collapses’ is then 
mysterious and often ultimately paradoxical.

In a long article devoted to this whole subject, Schrödinger [14] criticised such 
assumptions with the aid of his now famous cat paradox. To formulate this paradox we 
begin by assuming a cat isolated in a box with a gun pointed at the cat. The firing mechanism 
for the gun is activated when an individual electron strikes it. We further suppose a source 
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of the individual electrons which pass through a beam splitter. The effect of this splitter is 
to divide the wave function into two coherent parts ψ1(x) and ψ2(x). The first part simply 
goes off harmlessly and is absorbed. The second part is aimed at the device that fires the 
gun. Classically one would expect from this arrangement that if a single electron enters the 
system, there would be equal probability after the experiment was over for the cat to be 
alive or dead. This statement could be made meaningfully even before anyone had looked 
into the box to see what had happened.

Quantum mechanically, however, we must treat this situation in terms of the wave 
function. Let z1…zN represent the particles constituting the cat and let ψL(z1…zN) represent 
a living cat while ψD(z1…zN) represents a dead cat. Furthermore let y1…yM represent the 
particles of the gun, the bullet, the powder and the firing device. Let ψU(y1…yM) represent 
the unfired state of this system and ψF(y1…yM) represent the fired state.

Initially (just after the electron passes through the beam splitter) the wave function of 
the total system is

 

 

After the entire process is finished, the wave function is

 

 

Since the two components of this wave function are coherent, it then follows in terms of the 
von Neumann interpretation, that the state of the total system cannot be one or the other. It 
therefore seems that the cat is in a state that is neither alive nor dead. This ambiguity could 
be removed only when someone looked into the box and saw whether the cat was dead or 
alive. The question immediately arises then of whether in the case that the cat was found to 
be dead, the observer had not actually participated in ‘killing the cat’.

Schrödinger regarded this whole situation as absurd. Firstly it did not make sense to him 
that observation was needed to answer the question of whether the cat was alive or dead. 
In addition, even before observation, one might well think that the cat should at least know 
more than this about its own state. Or if one does not wish to attribute consciousness to 
the cat, suppose instead that it had been a human being in the box. To avoid violence we 
could replace the gun by a device that would prick his skin. Would this person find himself 
in an ambiguous state in which his skin was neither clearly untouched nor clearly pricked 
by the device?

In our approach this sort of paradox does not arise because we go beyond the assumption 
that the wave function provides the most complete possible description of reality. To 
define the actual state of being of the cat, we have to consider in addition the particles 
that constitute it. It is evident that when the cat is alive, many of these particles will be in 
quite different places and will move quite differently than they would if the cat were dead. 



104 The undivided universe

Indeed one can easily see that in the configuration space of the particles of the cat, there 
will be no overlap of ψL(z1…zN) and ψD(z1…zN). Therefore it is clear that at the end of the 
experiment the cat has to be either alive or dead. For the wave function corresponding to 
the live cat has no effect on the quantum potential acting on the dead cat or vice versa.

Indeed this sort of nonoverlap is present also in the conventional interpretations. 
However, in these latter, there is no way to remove the ambiguity in the state of being in a 
coherent wave function even when the components do not overlap. But in our interpretation 
the state of being also depends on the positions of the particles that constitute it and it is 
this which enables us to treat this situation non-paradoxically as in essence a simple case 
of pairs of alternative and mutually exclusive states.

As a matter of fact it is not even necessary to go as far as the cat to resolve this paradox. 
Thus if we consider the system of firing device, plus gun, bullet and powder, it is clear 
that there is no overlap between the wave function ψU(y1…yM) and ψF(z1…zM) (i.e. because 
after firing, the powder will become gas and the bullet will move so that their particles will 
be in very different positions). Therefore the particles constituting this system will either 
be in the state corresponding to the firing or non-firing of the gun. If the gun has actually 
fired, the bullet will be speeding towards the cat (and will not be in an ambiguous state in 
which it is neither moving towards the cat nor at rest). The state of the dead cat will then 
follow only if the bullet is actually moving towards it. In other words, once the electron 
has in effect been ‘detected’, everything proceeds in essentially the same way as it does in 
classical physics.

6.8 Delayed choice experiments

Wheeler [3] has given a detailed description of several possible types of ‘delayed choice’ 
experiments. These are designed to show that, according to the quantum theory, the 
choice to measure one or another of a pair of complementary variables at a given time can 
apparently affect the physical state of things for considerable periods of time before such 
a decision is made.

Like Bohr, Wheeler puts a primary emphasis on the phenomenon, in which the 
experimental arrangement and the experimental result constitute an indivisible whole in 
the way discussed in chapter 2, section 2.1. From his analysis of the delayed choice type 
of experiment, he concludes that “no phenomenon is a phenomenon until it is an observed 
phenomenon”, so that

the universe does not ‘exist out there’ independently of all acts of observation. It is 
in some strange sense a participatory universe. The present choice of the mode of 
observation…should influence what we say about the past…The past is undefined 
and undefinable without the observation.

We can agree with Wheeler that no phenomenon is a phenomenon until it is observed, 
because, by definition, a phenomenon is what appears. Therefore it evidently cannot be a 
phenomenon unless it is the content of an observation. The key point about an ontological 
interpretation such as ours is to ask the question as to whether there is an underlying reality 
that exists independently of observation, but that can appear to an observer when he ‘looks’ 
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(in physics, with the aid of suitable instruments). We have proposed a model of such a 
reality in which we say, along with Wheeler, that the universe is essentially participatory in 
nature. However, unlike Wheeler, we have given an account of this participation, which we 
show throughout this book to be rational and orderly and in agreement with all the actual 
predictions of quantum theory. In doing this we assume, as we have been emphasising 
throughout this chapter, that the underlying reality is not just the wave function, but that it 
also has to include the particles. As we shall see in this section, when we take this into account 
there is no need to say that the past is affected by our observation in the present. Nor do we 
imply even that what we say about the past is thus affected. Therefore the need to introduce 
such ideas is based on the insistence that the wave function provides a complete description 
of reality. Such insistence has led, as we have seen, to many other strange paradoxical 
features, e.g. with negative measurements and with the Schrödinger cat paradox. It seems 
to us preferable to consider extending our notion of reality by including the concept of 
particles, rather than to go on with an indefinite series of paradoxical consequences of 
sticking rigidly to the assumptions underlying the conventional interpretation of the 
quantum theory.

To illustrate what is involved in the delayed choice experiment, we first describe one of 
the simplest arrangements suggested by Wheeler [3] (the generalisation to more complex 
cases is straightforward). Wheeler uses a photon interference experiment. To apply our 
interpretation [15] to this experiment would require a treatment of the electromagnetic field 
which we do indeed outline in chapter 11. However, to simplify the discussion, we shall 
consider instead the interference of particles such as electrons or neutrons. The experiment 
is shown in figure 6.2, respective beams being then reflected by mirrors at E and B. The 
beams meet at an additional beam splitter F and interference can be detected either in beam 
G or in beam H. Two particle detectors are mounted so that they can be moved easily and 
quickly either to C1 and C2 or to  and  Then when the detectors are in the position C1 
and C2, the relative counting rates will be determined by the phase difference between the 
two routes reflecting respectively from E and from B. But with the counters at  and  
we can then tell which route a particle actually takes. But with the counters at C1 and C2, 
there is no way to tell this because the result depends on the interference between the waves 
that have traversed these two paths.

 

Figure 6.2: Schematic view of the delayed-choice experiment for photons passing through 
a half-silvered mirror at A. Counters C1 and C2 can be moved into positions  and  
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Suppose now that a single particle enters the system and furthermore suppose that it is 
represented by a wave packet that is not too broad. We can make the choice on which of 
these experiments to perform at sometime after the particle has entered the apparatus, but 
before it reaches the beam splitter F.

In the conventional interpretation of the quantum theory, the wave function is, as we have 
already pointed out many times, assumed to provide a complete description of reality. Therefore 
we must say that the wave function collapses to the actual result of the measurement. Thus in 
the first kind of experiment, it will collapse to a state corresponding either to the firing of  
or of  and in the second experiment it will collapse to a state corresponding to the firing 
of C1 or of C2. If the first experiment is done, then clearly the interference will be destroyed 
before the waves can arrive at the beam splitter F. But if the second experiment is done, 
interference will take place at the beam splitter F and then the wave function will collapse.

Aside from the difficulties in the von Neumann concept of collapse as discussed in chapter 
2, section 2.4, there are as yet no further problems in the discussion of this experiment. Such 
problems arise only if we try, in addition, to give a detailed account of the process by which 
the previous state of affairs led up to these results. According to Bohr [16] (also as explained 
in chapter 2, section 2.1) this is just what we should not try to do.

However, Wheeler, apparently at least implicitly disagreeing with Bohr’s position, did 
attempt to provide such an account. What he said was that if the counters are placed at  
and  and if, say, only  fires, one can then say that the particle traversed the path AB. On 
the other hand, if the counters are at C1 and C2 and if only C1 fires, then, Wheeler says, that 
in some sense, the particle must have traversed both paths together. Therefore one would 
conclude that what can be said about the past depends upon the present choice of the mode 
of observation.

It is clear however that in our interpretation there is no need for this strange attribution 
of past properties. For the reality is that, in all cases, the wave is split to traverse both paths 
while the particle traverses one or other in each individual case. But as has been brought 
out in a number of contexts, the interaction with the measuring apparatus implies mutual 
participation in which the final state need not directly reveal the earlier properties of the 
system. If the counter is placed at  and fires, then, as explained earlier, the system is left 
with the corresponding wave function and the interference at F is destroyed. But if the counter 
is placed at C2 and fires, then the system is left with the wave function corresponding to a 
particle moving from that point. But in getting there (whether it traverses the path ABF or 
AEF) it will have been affected by the quantum potential in the region of interference at F. 
Therefore we are not surprised to discover that the frequency of detection of such particles 
reflects the difference of phase between the two beams.

It should be recalled, however, that even the conventional interpretation of this experiment 
does not imply that what we say about the past is affected by our present choice of 
experiments. In fact the conventional interpretation would say that, in general, we cannot 
make unambiguous statements about the past on the basis of present observations. As we 
have seen our interpretation agrees with this in a certain way in that we cannot say from 
our observations at C1 which path the particle actually took. But we say that it actually took 
a definite path even though we cannot say what that path actually was. It is only if with 
Wheeler we tried to infer this past while holding to the conventional interpretation that we 
get into this sort of paradoxical way of talking about the past. 
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6.9 The watchdog effect and Zeno’s paradox

In the conventional interpretation, the quantum theory puts, as we have seen, the observ-
ing instrument into an essential role, in the sense that without it the equations of quantum 
theory would have no physical meaning. At first sight one might then think that the more 
carefully we ‘watched’ a given process, the more that we would learn about how it takes 
place. Yet as has been shown [17, 18], in the limit when the system is constantly watched, 
the process itself disappears and one is left with a constant state. While this is not actually 
a paradox, it does seem to suggest something unsatisfactory about the whole approach in 
the conventional interpretation. We shall see however that when this question is viewed 
ontologically, the whole effect can be seen to arise quite naturally in a way that is easily 
explained.

To discuss this question, let us consider the simplified example of an atom of angular 
momentum ħ in a magnetic field B in the z-direction. The possible eigenvalues of energy 
of the atom in this field will be

 

 

Suppose that initially the wave function corresponds to an angular momentum of zero. The 
transition to the state with angular momentum −ħ can be described more or less along the 
lines given in chapter 5, section 5.3. To do this we may assume, for example, that the atom 
in question contains a loosely bound electron which can, in an Auger-like effect, absorb 
the energy given off in a transition to the state of lower angular momentum −ħ. Again as 
shown in chapter 5, section 5.3, the probability of transition to such a state will then be 
proportional to the time t.

Let us now suppose however that, the angular momentum is measured by means of a 
very strong interaction which allows the measurement to take place in a time Δt much less 
than 1/ΔE where ΔE is the energy given off in this transition.

Without the measurement, the wave function of this atom would be given by (5.18) but 
only for times much longer than 1/ΔE. For shorter times we may write

  

where χ0(rA) represents a wave function corresponding to the zero angular momentum of 
the atom, while χ−ħ(rA) represents a wave function corresponding to an angular momen-
tum −ħ. And λ0(rB, t) represents the initial wave function of the Auger particle and λ−ħ(rB, 
t) represents the change of the wave function of this particle as it begins to move out of the 
atom. As pointed out in chapter 5, section 5.3, for sufficiently short times this wave func-
tion is proportional to the time.

When the measuring apparatus interacts with the atom, we will get
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where  represents the initial wave packet of the apparatus (which will not change 
for a particle of angular momentum zero) while  represents the apparatus wave packet 
corresponding to an angular momentum −ħ. As explained earlier in this chapter,  
and  do not overlap so that they determine separate channels into one of which 
the whole system must enter. If the interaction time with the apparatus is very short, then 
contribution of this term to the normalisation of the wave function will be proportional to 
t2 since the perturbed wave function itself is proportional to t.

Suppose then we made a series of measurements each one in a time Δt. In each of these 
measurements the probability of getting an angular momentum −ħ is proportional to (Δt)2 
and the probability that it is zero will be 1−γ(Δt)2 where γ is a suitable constant. As Δt 
decreases by a factor of 1/N, the probability of transition in a given measurement will be 
proportional to 1/N2, and in N measurements it will be proportional to 1/N. Therefore as 
N increases without limit, the net probability of transition goes to zero. Or in other words 
the effect of making repeated measurements of the angular momentum at great speeds is to 
prevent transitions from taking place.

In our interpretation this behaviour is perfectly comprehensible and indeed quite easy 
to explain. In order for a transition to take place, it is necessary that the perturbed wave 
function interfering with the original one shall produce a quantum potential that allows the 
Auger-like particle to escape. Otherwise it will simply remain stably in its original station-
ary state. However, if we measure the angular momentum very rapidly, then, as shown in 
equation (5.18), the perturbed wave function (which is proportional to t for times much less 
than 1/ΔE) will never become large, and furthermore it cannot make a significant contribu-
tion to the quantum potential. For this reason no transition can take place.

The behaviour described above brings out once again the essentially participatory nature 
of quantum interactions. To make measurements in very short times requires very strong 
interactions, hence very intense participation. The idea of measurement which implies that 
we are simply watching what is already there and not participating significantly, is seen to 
be particularly inappropriate in this example. 
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 Chapter 7  
Nonlocality

7.1 Introduction

We have seen earlier that nonlocality is a basically new feature of the quantum theory, 
at least in our interpretation. In this chapter we shall go into this topic in more detail, 
especially with regard to the analysis of the experiment of Einstein, Podolsky and Rosen 
(EPR) [1].

We shall first review briefly how this question is to be treated in terms of the various 
interpretations, and we shall show that all but one of them imply some form of nonlocality. 
However, it has generally been felt that the very concept of nonlocality is unacceptable in 
a scientific theory and so people have sought an explanation of this behaviour in terms of 
local hidden variables that would in principle determine the results of each measurement. 
This leads us then to give a brief discussion of Bell’s inequality [2] (which has to be 
satisfied by any such explanation), and also of the fact that Bell’s inequality is not actually 
satisfied, either by the predictions of the quantum theory or by the experiments that have 
been done to test this point.

We then go on to discuss how our own interpretation deals consistently with these 
questions by bringing in a nonlocal connection through the quantum potential. We finally 
explain the fact that nonlocality is not commonly encountered at the large scale level by 
showing that it is generally difficult to maintain the wave functions that are needed for 
this except for certain systems at low temperatures (such as superconductors) and highly 
isolated systems that have to be produced in a rather artificial way.

7.2 Nonlocality in the conventional interpretations

Nonlocality is usually discussed in terms of the EPR experiment. However, EPR emphasised 
not only the question of nonlocality, but also that of whether the quantum mechanics was 
what they called complete. By this they did not mean that it should cover everything that 
could ever be known, but rather that it had all the concepts necessary for its coherence 
as the basis of an ontology. The result of their analysis was that it was not complete in 
this sense. We shall give here a brief résumé of their analysis as it would apply to a spin 
experiment involving a molecule of total spin zero, each of whose atoms have a spin of 
one-half [3].

Their discussion was based essentially on what they meant by an element of reality. In 
general terms this signified some feature of the world that is real, independently of its being 
observed or otherwise known by us. In particular they proposed a sufficient criterion for 
such an element of reality: if, without disturbing the system in any way, one can predict 
the values of a given quantity with certainty, i.e. with probability equal to unity, then that 
quantity corresponds to an element of reality. Clearly this fits in with our general intuitive 
notions of what is to be meant by an independently existent element of reality.
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We now consider an experiment in which the molecule is disintegrated so that the atoms 
are separated by a large distance. Suppose that the spin of atom A is now measured in the 
z-direction and that a given result is obtained. We can then predict that the spin of atom 
B is opposite. Of course, atom A will be disturbed when its spin is measured, so that we 
cannot conclude that its spin was defined beforehand as an independently existent element 
of reality. But our predictions of the spin of atom B can now be made without disturbing 
atom B in any way at all. Because measurements of atom A do not disturb atom B in any 
way, it follows from the EPR criticism that the z-component of the spin of atom B must 
have been an element of reality even before atom A was measured and that indeed it was 
always an element of reality.

But now we could have measured any other component of the spin of atom A instead, 
and by considering such a measurement it follows that every component of the spin of atom 
B has always been an element of reality. From this EPR concluded that, the quantum theory 
is conceptually incomplete. For one of its basic principles is that when two observables do 
not commute, they cannot be defined together. Therefore at most only one of these could 
be an element of reality at a given time. But if two or more are elements of reality, then this 
means that the mathematical form of the theory cannot reflect this in any way at all. To take 
this into account we would need new concepts not contained in the present theory. So EPR 
would argue that while the results of the quantum theory are statistically correct, this theory 
does not give an adequate account of the actual reality of the individual system.

Although it is postulated that there is no interaction between the parti-cles through forces 
of known kinds, one could evidently assume that there was a new and as yet unknown 
kind of force that connected the two particles. Then when particle A was disturbed in its 
measurement, this disturbance would communicate itself to particle B in such a way as to 
bring about a result opposite to that of A for its spin.

If such an interaction was operating, then the criterion of EPR for an element of reality 
would clearly be irrelevant, since by hypothesis a disturbance of atom A can now bring 
about a disturbance of atom B. However, EPR did not seem to regard this sort of interaction 
as worthy of serious consideration. To see why, we note that there are two possibilities:

1.   The force is transmitted at some finite speed less than or equal to that of light. 
In this case the statistical predictions of the current quantum theory would, of 
course, have to fail for measurements of A and B that are space-like separated. 
But EPR assumed, as we have pointed out, that these statistical predictions are 
correct, and thus they did not even envisage such a failure of the current quantum 
theory. 

2.   The interaction is transmitted instantaneously. In this case the interaction would 
have to be nonlocal, i.e. to operate directly and immediately between the two 
particles with a strong force even at very large distances. Evidently this would 
violate the special theory of relativity.

However, Einstein felt there was an even more fundamental objection, because independently 
of relativistic considerations, he thought that all action had to be local, while he regarded 
nonlocal interactions as ‘spooky’ and thus in some way unacceptable [4]. Nevertheless he 
did believe that a suitable local explanation of this sort of experiment could eventually 
be obtained, perhaps on the basis of a new theory containing additional concepts that 
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would represent new elements of reality. It is clear then that EPR did not make an explicit 
discussion of the question of nonlocality and focussed instead on that of completeness.

Bohr [5], appreciating the penetrating criticism of EPR, took great care in formulating a 
response. Essentially this consisted in pointing out that his own approach of complementarity 
still applied, even when the particles were separated by large distances and when the results 
of experiments are separated by large intervals of time. The main point was that the attempt 
to analyse the process in detail, and in doing so to attribute independent reality to the 
properties of the particle B, for example, was not permissible in the quantum mechanical 
context. This is because the form of the experimental conditions and the content (meaning) 
of the experimental results are, in Bohr’s view, a whole that is not further analysable. 
Therefore there is no legitimate way to think about the properties of particle B apart from 
the experimental context in which they are measured. The context needed to think about 
the z-component of the spin of atom B is therefore not compatible with that needed to think 
about its x-component. This signifies that even though we can predict the properties of atom 
B from those of atom A without disturbing atom B, there is no experimental situation with 
regard to atom B in which both of the above predictions could have meaning together.

The crucial point here is that Bohr is using a different notion of reality from that of EPR. 
For Bohr a concept represents reality only in so far as it is in unambiguous correspondence 
with the whole set of possible phenomena and these phenomena are necessarily such that 
they have to be described in terms of the concepts of classical physics. For Einstein, however, 
concepts are a ‘free creation of the human mind’ and their correspondence with reality is at 
first assumed and then tested by the phenomena they predict. Therefore there is no problem 
in assuming the simultaneous reality of all the properties of particle B even though these 
cannot be simultaneously observed. Bohr regards this as a totally inadmissible way of 
using concepts in the context of quantum theory in which these have to be ambiguous and 
mutually exclusive, but nevertheless complementary.

The above constitutes the essence of Bohr’s answer to the emphasis of EPR on the 
question of completeness of the quantum theory. However, from this it also follows that it 
has no meaning, in his view, to talk about nonlocality. Indeed, according to Bohr nothing 
can be said about the detailed behaviour of individual systems at the quantum level of 
accuracy. There is only the total unanalysable experimental phenomenon and no way to 
discuss in detail what this could mean ontologically. Therefore it also follows that there 
is no meaning to talking about locality either. All that we can do is to use the quantum 
algorithm to calculate the probabilities of the various experimental results. Nevertheless it 
still seems that some kind of nonlocality is, at least, implicit in Bohr’s approach, because 
the phenomenon itself, which is spread out over space and time, is considered to be an 
unanalysable whole.

Recall, however, that the most common approach to quantum theory is along the lines 
of von Neumann [6] rather than that of Bohr. To show how nonlocality is implied in this 
approach, let us consider the wave function for a system of two separated particles with 
total spin zero. This is

 
(7.1)
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where f(rA) is the wave function of particle A and g(rB) is the wave function of particle B 
and the expression in the square bracket represents the spin part of the combined system. 
f(rA) may, for example, represent a situation where particle A is a long way to the left of 
the original centre of mass of the molecule, while g(rB) represents a situation in which 
particle B is equally far to the right. We then assume that the spin of particle A is measured 
by means of an apparatus whose relevant coordinate is represented by y. The theory of 
measurement that we have given in chapter 2 can readily be extended to the case of spin. 
Before the interaction with the measuring apparatus, the total wave function is then

 
(7.2)

where  is a wave packet representing the initial state of the measuring apparatus. We 
then introduce an interaction Hamiltonian which depends upon the spin of particle A in 
such a way as to separate the wave functions of positive spin from those of negative spin. 
As shown in the discussion around equation (2.4) and using a similar notation we obtain 
for the final wave function

 

(7.3)

As we have seen in this discussion,  and  will not overlap after the 
interaction is over. When an observation is made, the apparatus will be found in one or the 
other of these states as if the wave function had ‘collapsed’ to the state in question. We will 

 
(7.4)

 
(7.5)

After particle A is measured, particle B is in a well-defined spin state even though there 
is no measuring apparatus that has interacted with this particle. A similar result would 
have been obtained if we had measured the component in any direction designated by  
With regard to atom A, one can say that its interaction with the measuring apparatus was 
‘responsible’ for the ‘collapse’ on to the eigenfunction of its spin in the direction  But if 
there is no connection between A and B how can the latter ‘know’ that it too must ‘collapse’ 
into an opposite eigenfunction of the spin in the same direction, even though this direction 
was chosen arbitrarily when someone decided to measure A when the atoms were far apart? 
Particularly, if this choice is made too rapidly to allow a signal to pass from A to B, it seems 
very reasonable to suggest that A and B are directly connected, though in a way that is 
perhaps not yet known. And so one sees the need for some form of quantum nonlocality 
when we analyse the EPR experiment in terms of the von Neumann approach.

o  

be left essentially with either

r
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If there is a nonlocal connection between distant particles, what can we say about the 
possibility of using it to send signals from one of these particles to the other? Within the 
essentially statistical framework of the current quantum theory, this would require that 
there be something that we could do, for example, to particle A which would change the 
statistical result of measurements of the spin of particle B in one or more directions. We 
shall show that this is, in fact, impossible, from which it follows that EPR correlations 
cannot make possible the transmission of signals of any kind (including, for example, those 
that are faster than light).

To show this we use a simplified form of a proof by Eberhard [7]. Let us suppose an 
external system with coordinate y is allowed to interact with the spin of particle A. The 
initial wave function for the combined system will be

 
(7.6)

where α represents the standard spin indices and  represents the wave function for 
particle A corresponding to a positive spin in any chosen direction, while  represents 
a negative spin in that direction.

The most general possible result of this interaction will be represented by a unitary 
transformation on the sub-system consisting of y and A, because, by hypothesis, we are 
assuming our interaction does not directly disturb B. If it did then this would not constitute 
sending a signal from A to B, but would just be a direct disturbance of B by its interaction 
with y.

To represent this unitary transformation, we assume that  is the first term in an 
orthonormal set  The most general unitary transformation can be expressed as the 
matrix  where α and α′ represent respectively the initial and final spin indices. In this 
notation the initial wave function (7.6) can be written as

 
(7.7)

Under the unitary transformation, this goes over into 

 
(7.8)

Let us now consider spin averages for any spin σB for particle B. In the undisturbed state 
this average can be written as

 
(7.9)

This will be constituted of four terms, of which two may be called ‘diagonal’ and the other 
two called ‘off diagonal’. A typical diagonal term will be
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Since  and  are normalised, this reduces to

 
(7.10)

A typical off diagonal term will be

 

 

But because  and  are orthogonal this term is zero. We then get the familiar result

 
(7.11)

(which is zero because the second term cancels the first).
It is well known that a unitary transformation will not change the scalar products. It 

follows then that because this transformation acts only on particle A, the diagonal terms 
remain the same as before and that the off diagonal terms remain zero. Therefore the 
average of σB will be the same after transformation as before and we conclude then that 
nothing that we do to particle A will change the average spin properties of particle B.

7.3 Bell’s inequalities

We have seen that nonlocality is contained in all the interpretations of the quantum theory 
that we have discussed so far. As we have already pointed out in chapter 5, our own 
ontological interpretation also contains nonlocality as a basic feature.

In considering the nonlocal implications of this ontological interpretation, Bell [8] was 
led to ask whether nonlocality was necessary for all possible ontological explanations 
of quantum mechanics. He did this by considering the EPR experiment in more detail, 
representing the states of elements of reality by a set of hidden variables λ. These, together 
with the combined wave function of the observed system and the observing apparatus, 
will determine the results of each individual measurement process. In the case of the EPR 
experiment, we suppose the apparatus that measures the spin of particle A is characterised 
by an orientation parameter a, while the apparatus that measures the spin of particle B 
is characterised by the orientation parameter b (so that they need not, in general, be in 
opposite directions). As shown in chapter 6, we may, in general, expect that each individual 
result of the spin of particle A will depend on hidden variables μa associated with the 
corresponding piece of measuring apparatus, while results for measuring particle B will 
depend on the hidden variables μb of the second piece of apparatus. In addition there will 
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be some further hidden variables. There may be a set of such variables λA and λB belonging 
respectively to particle A and B by themselves, and a further set λ which may be associated 
with the observed system as a whole, rather than just one of the particles.

We then introduce a symbol to represent the result of measurement of the spin of particle 
A, with A=+1 for a positive spin, and A=−1 for negative spin, while B is the corresponding 
symbol for the result of a measurement on particle B. It is clear from what has been said 
above that, in general, there may be a set of such variables

A=A(a, μa, b, μb, λA, λB, λ),
B=B(a, µa, b, µb, λA, λB, λ). (7.12)

A and B also depend on the wave function of the combined system, but we suppress this 
for the sake of conciseness.

At this point we have to ask how to take into account the context dependence of the 
results of quantum mechanical observation that are discussed in chapter 6, section 6.5. It 
is important not to confuse the question of context dependence with that of nonlocality 
even though it is difficult to separate the two. To put the question of nonlocality for this 
experiment, we may assume that only a local context is allowed. In other words, the result 
of measuring particle A depends only on the context of particle A (i.e. the apparatus that 
measures its spin) and not on the context of particle B. The interaction between A and B 
will be local if the result A depends only on μa and λA and not on μb and λB (and vice versa 
for B). Therefore

A=A(a, μa, λA, λ) and B=B(b, μb, λB, λ). (7.13)

If the above is satisfied (i.e. if each result depends only on a local context) then we may say 
that we have local hidden variables.

In this connection, however, let us recall that, as indicated in section 7.2, it would be 
quite possible to conceive of purely local explanations of the EPR experiment by means of 
forces that are transmitted at the speed of light or less, provided that the predictions of the 
quantum theory failed when measurements were made with space-like separation and held 
only when there was sufficient time for signals to be transmitted back and forth between A 
and B. One might explain such a behaviour by assuming an ambient field that connected 
both particles. By passing back and forth between A and B a number of times, this field 
would guarantee that B would ‘know’ which properties of A were being measured and 
would behave accordingly. This sort of explanation has always been open to consideration 
and in fact we have discussed its possibility in some detail in Bohm and Hiley [9]. But 
Bell’s work is based on the assumption that there is no time for a signal that would allow 
the results of a measurement of one of the particles to depend on the context supplied by 
the other measuring apparatus. Equation (7.13) then shows that local hidden variables will 
inevitably satisfy this requirement.

To proceed with the derivation of Bell’s inequality we must now consider the distribution 
of hidden variables. Locality implies that the distributions over μa and μb are independent. 
It further implies that when we rotate the apparatus from one orientation to the other, its 
hidden variables will rotate with it and that such a rotation will not significantly alter the 
hidden variables, λA, λB, λ, of the two particle system.
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This means that the hidden variables, μa, can be taken as having the same range 
independently of the orientation of the apparatus. We may therefore replace the symbol 
μa by μA, which denotes the fact that the same set of parameters can be used regardless of 
the orientation of the apparatus. Similarly we replace μb by μB. We therefore define three 
distributions PA(μA), PB(μB), and P(λA, λB, λ). The function P of λA, λB and λ is able to express 
the statistical correlations that may be present between the two systems even though the 
measurement of one of the systems does not affect the other in any way.

We can then define the averages of A and B over the hidden variables μA and μB 
respectively. This gives

 

(7.14)

Since

|A(a, μA, λA, λ)|=|B(b, μB, λB, λ)|=1  

it follows that

 (7.15)

We then go on to consider the correlations of experimental results for A and B with various 
orientations a and b. These are what can be readily measured and they will provide the test 
for locality. A typical correlation is

 
(7.16)

To obtain the Bell inequality we begin by considering

 

 

Taking the absolute value of both sides and noting that
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we obtain

|P(ab)−P(ac)|≤2±(P(dc)+P(db)).  

From this it follows that

|P(ab)−P(ac)|=|(P(dc)+P(db)|≤2. (7.17)

The above is Bell’s inequality which must be satisfied for a local hidden variable theory to 
apply to our system of two particles with spin.* These inequalities make possible a test for 
locality on the basis of measurements of four sets of correlations. 
This symmetric form of the Bell inequality was first proposed by Clauser et al. [10].

 
Figure 7.1: Angular relation between the axes of various spin measurements

The predictions of the quantum theory are that

 (7.18)

There is a range of angles for which (7.18) does not satisfy the inequality (7.17). For 
example consider the set of axes shown in figure 7.1. Here, α=b−a β=c−d and γ=d−c. 
Putting these in (7.17), we find |P(α)−P(α, β)|+|P(γ)+P(β+γ)|≤2. Now if α=60, β=60 and 
γ=0 then the inequality on the left hand side is 5/2 which is certainly not less than 2 so that 
the inequality is violated.

Bell’s inequality has been tested in a large number of experiments and generally speaking 
the inequality has been found to be violated. These experiments do not use particles with 
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spin but instead use correlations of polarised photons produced in atomic cascades. It can be 
easily shown that this case is mathematically equivalent to that of spin. The first experiment 
of this kind was performed by Freedman and Clauser [11]. The latest and perhaps the most 
thorough set of experiments, has been performed by Aspect et al. [12]. In particular the 
latter were able to test whether the correlations were maintained even when the events of 
detection of the two photons were outside each other’s light cones. Aspect et al. found the 
inequality was still violated. This implies that, independently of quantum mechanics, we 
have an experimental proof that if there are hidden variables they must be nonlocal.

Aspect’s experiments have been criticised by some physicists [13]. The main criticism 
is that Bell’s inequalities could have been absolutely proved to have been violated only if 
the photon detector had an efficiency close to unity. With the actual rather low efficiencies 
of these detectors, there seems to be room for assumptions concerning the hidden variables 
of the apparatus which could still preserve locality in spite of the experimental results. 
However, these assumptions seem rather arbitrary and artificial and, in fact, they give the 
impression of being contrived just to ‘save the appearances’. The least we can say is that 
there is a strong prima facie case for nonlocality.

As we have seen earlier, the whole notion of taking Bell’s inequality as a test for locality 
is physically relevant only in a context in which we are dealing with measurements on A 
and B that are outside each other’s light cones. Aspect’s third experiment [12] is the one that 
provides strong evidence that this inequality is still violated in this context. For included 
in this experiment is a switching device that could randomly change the orientations of the 
detectors in a time too short for a light-like signal to pass between them. Of course one 
could suppose along the lines we have discussed earlier, that there was an ambient field 
that could pass signals not only between the particles A and B, but also between these and 
the random switching device. The particles A and B could then ‘know’ what the random 
switching device was going to do and they could adjust their behaviour accordingly. But 
this does not seem to be very plausible especially since the switching device could, in turn, 
depend on other random devices going on in an indefinitely proliferating chain. This could 
even include the human being who chose to set these devices up in a certain way. If, for 
example, measurements were made when A and B were separated by millions of miles, 
giving the experimenters the chance to change the apparatus in an arbitrary way, we would 
then assume that the ambient field would have to ‘inform’ the particles A and B of these 
changes so that they could adapt accordingly to produce the proper correlated behaviour. 
Of course it is possible that somewhere along this chain quantum mechanics would fail, 
but then it is the whole purpose of Bell’s inequality to show that any local hidden variable 
theory which allows for any kind of independent disturbance of a system from outside 
itself must imply the failure of quantum mechanics.

In our treatment we have only discussed purely deterministic local hidden variable 
theories. There has been a great deal of work done on obtaining inequalities of the Bell 
type for stochastic hidden variable theories [14]. Although the details of this work are more 
complex, the results are essentially the same. We will discuss a theory of stochastic hidden 
variables in chapter 9. 
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7.4 Extension of Bell’s theorem to three particles

Recently there has been developed a new proof of the impossibility of local hidden variables 
based on the consideration of three or more particles. In this proof it is directly shown that 
even the states of perfect correlation lead to a contradiction with quantum mechanics so 
that no statistical criteria are required and no inequalities are involved.

We shall use here the very concise and simplified version of this proof presented by 
Mermin [16] who considers a system of three spatially separated particles which we denote 
by 1, 2, and 3 respectively. The argument of Bell was based on choosing a particular state, the 
singlet state, of a combined system of two particles and showing that under the assumption 
of locality the correlations of these particles are not compatible with those predicted by 
the quantum theory. However, to obtain this result, Bell had to work out certain features 
of the statistical correlations of the two particles. There is no way from the correlations 
observed in individual instances to show a contradiction with locality. But when there are 
three or more particles then one finds that even the perfect correlations cannot be assigned 
consistent values under the assumption of locality. And so the impossibility of local hidden 
variables is demonstrated without the need for any further statistical measurements.

Mermin begins by considering the three mutually commuting operators σ1xσ2yσ3y, σ1yσ2xσ3y 
and σ1yσ2yσ3x. He supposes that the wave function Φ is an eigenfunction of all three of these 
with eigenvalue 1. One can then immediately obtain a fourth operator, σ1xσ2xσ3x, which is 
the negative of the product of all the above and therefore commutes with them. It clearly 
has the eigenvalue −1 for the state Φ. We can then write

m1xm2ym3y=1 m1ym2xm3y=1
m1ym2ym3x=1 m1xm2xm3x=−1  

where the ms are the eigenvalues of the corresponding individual spin operators. From 
these equations, we can obtain a set of perfect correlations. For example, if we measure σ1x 
and σ2y then the value of σ3y is completely determined and so on.

If we multiply the four equations together, we obtain −1 on the right hand side, but 
+1 on the left hand side. Therefore there is a contradiction with our initial assumption 
that these values for any one particle are independent of what is measured for the other 
particles. From this we see that the assumption of locality is directly violated.

A weaker implicit assumption, namely, that of simple locality, is that the spin variables 
are at most locally context dependent (in the sense that the apparatus that measures a 
particular spin variable is indivisibly linked to that spin). However, what follows from the 
above proof is that each particle is also indivisibly linked to a context determined by the 
pieces of apparatus that measures the other particles. Each value such as m1x appears twice 
in the above equations, combined with different values for the other particles (in this case 
m2ym3y and m2xm3x). Therefore we are in essentially the same situation as that treated by 
Mermin for the case of two particles as discussed in chapter 6, section 6.4. Although the 
three operators σ1x, σ2y and σ3y all commute as do σ1x, σ2x and σ3x, nevertheless we cannot in 
general obtain the same value of m1x when it is measured along with σ1x and σ3y as when it 
is measured along with σ2x and σ3x. As we have already pointed out the reason is that the 
operators other than σ1x in one set do not commute with those in the other.
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In the ontological interpretation this kind of context dependence would be evident 
because the measurements of non-commuting operators require different and mutually 
incompatible pieces of apparatus. Therefore there is no reason why σ1x should have the 
same value no matter what other operators could be measured simultaneously by the cho-
sen apparatus. Therefore there is no way in which the contradiction obtained in the proof 
could arise.

7.5 The EPR experiment according to the causal interpretation

It will be instructive to show in detail how an EPR-type experiment is to be understood 
in our approach for the case of two particles (no essentially new principles are involved 
in the case of three or more particles). Strictly speaking, to compare our results with the 
discussion that has been given here, we would need to use the causal interpretation for 
spin. Although we do develop this in chapters 10 and 12, we shall, for the sake of simplic-
ity, consider here the case of a molecule of total angular momentum ħ. This will give an 
EPR type correlation very similar to that obtained with spin. Although the Bell inequality 
cannot be directly applied to this case, an extension of Bell’s idea to systems of higher 
angular momentum has actually been carried out by Mermin [17] and yields similar but 
more complex results.

Let us consider atom A whose centre of mass is represented by RA and whose internal 
electron coordinate is represented by rA, while corresponding qualities for atom B are RB 
and rB. After the molecule has been disintegrated, the wave function of the whole system 
can be built out of wave functions of the separated atoms. We assume the centre of mass 
of these atoms have wave functions given by  and  We choose internal 
states with angular momentum ħ, which can be represented by gA(rA)ψi(rA) and gB(rB)ψi(rB) 
where

 

(7.19)

The above evidently represent the three possible eigenvalues of the angular momentum 
operator along the z-axis. The combined wave function is then

 

(7.20)
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where N is a normalisation constant. The above, being a scalar, corresponds to total angular 
momentum zero.

We assume for simplicity that all the  and g are real so that both particles are at rest. As 
explained in chapter 4 this means that the quantum potential is balancing the total classical 
potentials that are responsible for the stability of the atoms.

Suppose now we made a measurement of the angular momentum of particle A in any 
direction. Because of the isotropy of the wave function, we can always choose this as 
the z-direction. Using the theory of measurement described in chapters 2 and 6, we may 
assume an interaction Hamiltonian

 (7.21)

where y is the relevant coordinate of the measuring apparatus and where λ is a suitable 
constant chosen so large that the measurement will be impulsive. The z-component of the 
angular momentum operator for particle A is

 
(7.22)

where  is the azimuthal angle of particle A.
If ΦA(y) represents the initial wave packet of the apparatus, then the total initial wave 

function will be 

χ0=ΦA(y)Ψ.  

During the interaction, the wave function, χ, will be proportional to

 
(7.23)

where α is a constant proportional to λ. To obtain a measurement, αΔt must be large 
enough so that the ΦA(y−jαΔt) do not overlap for different j. In this case there will be no 
interference between terms of different j, and the apparatus particle will enter one of the 
packets corresponding to a certain value of the angular momentum j′ħ. Thereafter it will 
remain in that packet and the quantum potential will be determined by the corresponding 
wave function ψj′(rA)ψ−j′(rB). As explained in chapter 6, this means that everything has 
proceeded as if the wave function of the system had ‘collapsed’ to ψj′(rA)ψ−j′(rB). Not only 
will particle A have the angular momentum j′ħ but particle B will have the opposite angular 
momentum −j′ħ, so that the two angular momenta will be correlated and this will happen 
for an arbitrary orientation of the apparatus. Thereafter particle B will behave in every way 
as if its angular momentum had been measured and found equal to −j′ħ.

As we shall show this correlation is evidently both context dependent and nonlocal. 
Indeed we will find that B is dependent on the apparatus that measures A which provides 
the nonlocal context for B. Of course, both A and B are context dependent in the sense that 
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the angular momentum of each is a potentiality that is realised according to the orientation 
of the apparatus that measures A and the state of the ‘hidden’ particle variables yA belonging 
to this apparatus.

The cause of the correlation between the particles is evidently the quantum potential. 
It is interesting to follow in detail how this comes about during the period of interaction. 
However, to do this we shall use the guidance conditions which, as we recall, imply 
the quantum potential. This potential can indeed be calculated from ∂S/∂t, but it is very 
complicated and it is more perspicuous to use the guidance conditions.

We begin by expressing the relevant part of the wave function (7.23) as the following

 
(7.24)

According to equation (7.22), the z-component angular momentum of particle A 
is  and of particle B is  where S is the phase of the wave 
function. For Δt=0 the wave function is real, so that S=0 and both particles have no angular 
momentum. More generally, the z-component angular momentum of particle A will be 
given by

 

 

and a similar expression holds for the z-component of the angular momentum of particle B. 
Assuming ΦA(y) is real, we then obtain

 

 (7.25)

Because the wave function depends only on the combination  it follows that

 

 

Initially when Δt=0, it is clear that  However, after a short time the 
contribution of ΦA(y−αΔt) and ΦA(y+αΔt) no longer cancel and the values of  and  
will clearly then depend on y, which, as we have been assuming, has a random distribution 
with probability |ΦA(y)|2. All other quantities being equal, the angular momentum variables 
for A and B will then separate depending on the value of y. But the net result also depends 
on θA and θB, and on  It is clear that the behaviour of particle B for example will 
depend on the initial values of θA and  as well as on those of the apparatus. So we clearly 
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have a nonlocal interaction. But it should be added that the net result for particle A will 
also depend on the initial properties of particle B. In other words the result we get for an 
individual measurement of A already anticipates to some extent the way in which particle 
B starts out. That is to say the nonlocality is reciprocal.

Because  we can be sure that eventually when the apparatus packets have 
separated one of the particles will end up with a unit of angular moment and other with the 
opposite unit. The probability of each result can be obtained by integrating the square of 
the net wave function over all the relevant coordinates including those of the apparatus, and 
as is easily shown, this comes out the same as in the conventional interpretation.

It is clear then that the assumption (7.14) underlying Bell’s inequality is violated. For 
if we measure B, the result will depend, not only on the variables of particle A, but also on 
those of the apparatus that measures A. From this it follows, as we have anticipated earlier, 
that this experiment involves not simple nonlocality but rather a dependence on a nolocal 
context.

Since the statistical results of our interpretation are the same as in the usual interpretation, 
we can see from the discussion in section 7.2 that the nonlocal quantum potential cannot 
be used to carry a signal, if this latter has to be detected statistically according to the rules 
of quantum theory. This means that there is no way to control the behaviour of atom B 
systematically by anything we might do to atom A.

7.6 Loss of nonlocality in the classical limit

We have thus far gone extensively into quantum nonlocality and have seen that it can arise 
in a great many contexts. At first sight one might be concerned as to whether we will then 
be able to understand why nonlocality is not encountered in our common experience of the 
world. Basically the answer to this question is quite simple. For our ordinary experience, 
both in the domain of common sense and in that of classical physics, is restricted to 
situations in which the quantum potential is very small, so that, in this context at least, it 
does not produce significant EPR correlations. For, as we have seen, quantum nonlocality 
is entirely the product of the quantum potential.

Nevertheless it may be instructive to see in more detail what are the conditions which 
favour nonlocality and what are those which do not. First of all it should be clear that EPR-
type wave functions, which involve linear combinations of products of single particle wave 
functions, will be stabilised by suitable classical interaction potentials V(r′−r) between the 
particles. For example, in helium, the electrostatic interaction between electrons brings 
about a big energy difference, ΔE, between wave functions that are symmetric linear 
combinations of the one particle electron wave functions and those that are antisymmetric 
linear combinations of these wave functions.

In the interaction of the system with others which involve energies less than ΔE, these 
linear combinations of wave functions will remain stable. At the atomic level, ΔE is quite 
large and this explains why the chemical combination into molecules holds together until 
they are disturbed by, for example, thermal fluctuations with temperatures such that kT is 
not too much less than ΔE. With superconductors we also have the possibility of EPR-type 
wave functions. But since ΔE is small, these can only be maintained at low temperatures.
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The EPR experiment is concerned with situations in which there are correlations 
between free particles for which ΔE=0. It may therefore be expected that such EPR 
correlations may be very difficult to maintain, for example, in the face of collisions and 
various kinds of external disturbances that could change the spins of atoms. Indeed if we 
regard measurement as a disturbance, we can see that it does indeed break the correlations 
and leaves us with product wave functions.

More generally we might consider what happens in a collision in which the angular 
momentum can be altered. We shall discuss the case of a molecule of total angular momentum 
zero which disintegrates into two atoms, each of which has angular momentum ħ. While 
the atoms are flying apart the wave function is given by (7.20a). Suppose a collision takes 
place between particle A and another atom, C, whose centre of mass coordinates are RC and 
whose internal coordinates are rC. To represent the full details of this process would require a 
complex notation that would not be very perspicuous. We shall here simply outline only the 
essential results. Let us suppose that atom C has the wave function  
so that the combined initial wave function for all three particles is  
where Ψ is given by equation (7.20a) and where  represents a wave packet. In the 
collision process, the z-component of the angular momentum will be conserved, thus if 
i→i′ and j→j′, then i+j=i′+j′.

In the final wave function there will appear products such as

 (7.26)

where  represents a wave packet in which the centre of mass of particle C will be 
moving differently from what it does in its initial state, and similarly for  Particles 
A and C will end up with energies that depend on their final and initial angular momenta. 
Therefore, if, for example, particle C interacts with a state of angular momentum ħ of 
particle A, its wave packet will move with a different speed from that of a particle that had 
interacted with an angular momentum of −ħ, or 0. Sooner or later these wave packets will 
therefore cease to overlap and the system will behave as if particle A had ‘collapsed’ into 
a definite angular momentum, while particle B had collapsed into an opposite state. The 
effective wave function would now be a product of the type (7.26) and the EPR correla-
tions would have vanished. This shows that even if EPR correlations should happen to arise 
under natural conditions, they would eventually be destroyed. 

7.7 Symmetry and antisymmetry as an EPR correlation

A very important type of EPR correlation occurs with symmetric or anti-symmetric wave 
functions. However, this type of correlation has an important feature that is different from 
those examples that we have thus far discussed.

To see what this difference is we first note that for equivalent particles, the Hamiltonian 
will be a symmetric function of all the particle variables. It follows then that if we have 
a solution of the wave equation, the interchange of two particles will generate another 
solution. We can then form linear combinations of solutions involving various permutations 
among the particles. Among these the symmetric and antisymmetric combinations are 
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particularly interesting because all known particles are either bosons or fermions which 
have respectively symmetric and antisymmetric wave functions.

What is particularly significant in the context of our discussion here is that there is 
what is called a superselection rule implying that transitions between symmetric and 
antisymmetric wave functions can never take place (which follows from the symmetry of 
the Hamiltonian).

Therefore if one of the particles of such a system interacts with something else, for 
example, a measuring apparatus, it no longer follows that the unoccupied packet can have 
no further effect on the particles. Rather, there can be such an effect and this is indeed what 
is ultimately responsible for the Pauli exclusion principle.

To illustrate this, let us consider a measurement of a single particle operator OA with 
eigenvalues a and eigenfunctions ψa(xA). Because of the equivalence of particles, another 
particle B will have a corresponding operator OB with eigenvalues b and eigenfunctions 
ψb(xB). The wave function for the combined system can be expressed in terms of the 
products ψa(xA)ψb(xB). If, for example, the wave function is antisymmetric, we can write

 
 

with Cab=−Cba.
Let us suppose that we want to measure the operator OA. According to the theory of 

measurement that we have given in chapter 6, to do this we would need an interaction with 
the measuring apparatus

 

 

where y is the relevant coordinate of the measuring apparatus and λ is a suitable constant. 
But for equivalent particles it is impossible to have such an interaction as this would destroy 
the symmetry of the Hamiltonian. To obtain a symmetric Hamiltonian we write

 

 

If  is the initial wave packet of the apparatus we will obtain, after interaction,

 
 

Let us choose a certain pair of eigenvalues a1 and b1. Their contribution to ψ will be

 
 

It is clear that the measurement has left the wave function antisymmetric.
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Suppose we find that y is close to a1. But from this information we cannot tell whether it is 
particle A or particle B that is left with the corresponding eigenfunction. It follows then that 
there is no way in such a measurement to distinguish between particle A and particle B.

This implies that quantum mechanically equivalent particles are indistinguishable 
whereas classically they might, in principle, be distinguishable by putting ‘marks’ on them. 
From this it has often been concluded that particles are not merely indistinguishable, but 
that they are identical. To do this is to go from an epistemological statement referring to our 
ability to distinguish things, to an ontological statement referring to what the particles are, 
i.e. one and the same. We recall from chapter 2 that in a positivist philosophy, epistemology 
and ontology are thus equated. But as we also stressed before, there is no real necessity to 
do this. Indeed in our ontological interpretation of the quantum theory, we must say that 
although the particles are indistinguishable, they are still different, and that each one exists 
continuously and therefore has its own identity.

In order to obtain the predicted results of the quantum theory, there is no need to assume 
such an identity, for these results all follow from the antisymmetry of the wave function 
alone. Indeed our interpretation gives the same results as those of the conventional ones, 
whether the wave function is symmetric, antisymmetric or has no particular symmetry. 
These results follow when we average over the positions of all the particles with the 
probability density in configuration space 

 
 

To illustrate what is meant by the identity of a particle when the wave function is 
antisymmetric, let us again consider two particles A and B, with two possible wave 
functions

 

 

The antisymmetric wave function for the combined system is proportional to

 

 

The momenta of the particles are pA=∂S/∂xA and pB=∂S/∂xB. It is clear that pA=pB and that 
both particles are moving with the mean momentum (k1+k2)/2. The probability that the 
particles are at the same place is zero and this exemplifies the exclusion principle. The 
quantum potential is
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This is a constant and therefore it is consistent with the fact that the particles have no relative 
motion. (Recall that what is described as relative kinetic energy in the usual approach is 
here attributed to the quantum potential.)

When the time-dependent Schrödinger equation is applied, one will find that these 
packets move and spread in a way described in chapter 4. We shall however suppose that 
this spread is negligible, so that the centres of the packets will move with velocities k1/m 
and k2/m respectively. Eventually the wave packets will separate and then the wave function 
will be proportional to

 

 

At this point the two terms in the above wave function will no longer overlap, therefore 
they constitute separate channels in configuration space, into one of which the system as a 
whole must enter and remain thereafter. The unoccupied channel then has no effect on the 
quantum potential acting on the particles. Therefore the system is behaving as if it is in one 
of these channels alone, for example, the one in which the particle A has momentum k1 and 
particle B has momentum k2.

In this state, the quantum potential between the two particles is zero as it was in the original 
state. But evidently while the packets were separating, but still overlapping significantly, 
there had to be a quantum potential which accelerated particle A to momentum ħk1 and 
decelerated particle B to momentum ħk2. The antisymmetric wave function is therefore a 
particular case of the EPR-type wave function with its nonlocal interactions.

It is clear that once the particles have entered a particular channel in configuration space 
in which they are distinctly separated in ordinary space, each particle continues to exist with 
its own identity and continues this identity in its movement. We could in principle measure 
the position of one of these particles again and again, thus verifying that it continued to 
exist just as we could if the wave function were not antisymmetric. Although we could not 
know whether the particle we observed corresponded to the original label A or B, we would 
nevertheless be sure that we had detected the same particle in successive measurements 
and that the other, far away particle, could never become confused with the one that we 
had measured.

Up until now it would appear that the information in the unoccupied channel in 
configuration space had lost all potential for activity as it does for measurements in general 
in the way that we have explained in chapter 6. Suppose however that we brought the two 
particles back together by means of a suitable potential. This potential would also act on 
the unoccupied channel because of the symmetry of the Hamiltonian. So eventually the 
two channels would meet, and we would then lose the ability to keep track of the identity 
of each particle by further measurements, even though each particle would still retain 
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its identity. The quantum potential would then be affected by the channel that had been 
unoccupied as well as by the one that had been occupied. And the particles would display 
the effects of the Pauli exclusion principle so that they would never be in the same place.

As pointed out earlier, the reason why the information in the unoccupied channel does 
not totally lose its potential for activity is because the antisymmetry of the wave function 
constitutes a superselection rule that is maintained in all interactions and therefore in all 
measurement processes as well. When there is no superselection rule, the unoccupied 
channel is treated sufficiently differently from the occupied one so that it would be extremely 
improbable for them ever to interfere significantly again. But with a superselection rule this 
will, as we have seen, take place.

It follows that the Pauli exclusion principle and all other effects of the antisymmetry 
of the wave function are really manifestations of nonlocality. In fact, this nonlocality is so 
extreme that even particles that are very far apart must maintain unoccupied packets that 
allow the wave function to be antisymmetric and it is just this whole set of packets that 
may later come together in such a way as to guarantee that the particles will obey the Pauli 
exclusion principle whenever these packets meet again.

7.8 On objections to the concept of nonlocality

We have seen that some kind of nonlocality is common to all interpretations of the quantum 
theory which we have discussed thus far. Nevertheless there have been persistent and strong 
objections to the consideration of nonlocal theories of any kind, usually with the hope that 
a local interpretation will sooner or later be possible.

In ancient times it does not seem that strong objections to nonlocality were very 
common. However, by the sixteenth century nonlocality did not seem to be an acceptable 
concept. For example, Newton referred to it as a’philosophical absurdity’ [18]. This sort 
of view continued to modern times. Thus, as we have already pointed out earlier, when 
Einstein noticed the possible nonlocal implications of the quantum theory, he referred to 
it as ‘spooky’ action at a distance [5]. The general mode of explanation that is currently 
acceptable in science is either action through contact or else action propagated continuously 
by fields. Indeed anything more than this is often regarded as incompatible with the very 
possibility of doing science.

We cannot see any well-founded reason for such objections to the concept of nonlocality. 
Rather they seem to be more or less of the nature of a prejudice which developed together 
with the growth of modern science. First of all, the concept of nonlocality is perfectly 
rational in the way that we have used it in our interpretation of the quantum theory. For 
it has led neither to internal logical contradiction nor to disagreement with any facts. 
Moreover there is nothing in what we have done that disagrees fundamentally with the 
current scientific approach. Some people might object that if everything is strongly and 
nonlocally connected, there is no way to do science, because we will not be able to isolate 
any system sufficiently to study it. But we have shown that in the context of the large scale 
level in which physical investigations are carried out, nonlocal effects are not significant. 
Therefore our interpretation allows for exactly the same degree of separability of systems 
that is required for the kind of scientific work that is actually being done. We then made 
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nonlocal inferences about the finer and more subtle aspects of material processes, but 
these are based on ordinary rational scientific inferences. Indeed it is just by using the 
well-established methods of science that we have been led to make such inferences of 
nonlocality.

Another objection to nonlocality is that it would violate special relativity. We shall discuss 
this question in more detail in chapter 12, where we shall show that our interpretation is, 
in fact, compatible with special relativity. For the present we merely note that, as has been 
shown in section 7.2, quantum nonlocality will not allow a signal to be transmitted faster 
than light by means of the statistical measurements that are basic to the current quantum 
theory in its conventional interpretation. Since our interpretation leads to the same results 
as do the conventional ones, it follows that through quantum nonlocality there will be no 
way to exert instant control over what happens at far away places, nor to transmit signals 
to such places.

We have not yet found what we could regard as a valid logical or scientific reason 
for dismissing nonlocality. We are therefore led to ask whether there could not be some 
other kind of reason. It may well be that one of the main reasons that people dislike the 
concept of nonlocality can be found in the history of science. For in the early period of the 
development of science there was a long struggle to get free from what may perhaps have 
been regarded as primitive superstitions and magical notions in which non-locality clearly 
played a key part. Perhaps there has remained a deep fear that the mere consideration of 
nonlocality might reopen the flood gates for what are felt to be irrational thoughts that lurk 
barely beneath the surface of modern culture. But as we have argued, there is no inherent 
reason why this should happen. However, even if there were such a danger, this would not 
by itself constitute a valid argument against nonlocality. Indeed if one were to accept such 
arguments one might equally well say, for example, that nuclear energy should not even be 
considered for further investigation because it might lead not only to nuclear war, but also 
to radioactive contamination and to destructive genetic mutations. While it is necessary 
to be aware of all these dangers, we still have to be able to enquire freely into all these 
avenues of research.
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 Chapter 8  
The large scale world and the classical limit of  

the quantum theory

8.1 Introduction

We have been discussing what may be called quantum reality as existing on its own without 
needing any observers, but capable nevertheless of containing observing instruments. We 
have suggested in several places that there is a continuous transition between this total 
quantum reality and the large scale world of ordinary experience. The question before us 
now is whether we can explain how this large scale world as a whole comes out of the 
basic quantum laws, or at any rate, those features of this large scale world that can be 
described in terms of classical physics. In other words, is classical physics contained in our 
interpretation of the quantum theory as a limiting case?

In order to answer this question it is essential to show that quantum mechanics contains 
a classical level which is not presupposed as in the usual approach, but which follows as 
a possibility within the quantum theory itself. Here we must point out that this is by no 
means self-evident. It is of course clear that we will obtain classical behaviour whenever 
the quantum potential is negligible. But as we shall see, quantum theory generally implies 
the possibility that even for very high quantum numbers, the quantum potential may still 
be large. The behaviour at the large scale level is therefore in general not necessarily 
classical. However, we shall show that the general conditions in the universe are actually 
such as to imply an approximately classical behaviour for objects containing a sufficiently 
large number of particles (which means that there is a classical level that is essentially 
independent of measuring instruments). This is a distinct advantage of the ontological 
interpretation, for as we shall bring out later, all other interpretations presuppose a classical 
level (chapter 13) or else imply the assumption of some kind of change in the basic theory, 
which makes possible the classical level (Stapp [1], Ghirardi, Rimini and Weber [GRW] 
[2] and Gell-Mann and Hartle [3]).

The classical level is necessary not only because it is observed to exist, but also because 
within it, quantum mechanical processes can manifest themselves in phenomena which are 
essentially independent of further observation. As we shall see, it is this which makes it 
possible for people to establish and share knowledge of an objective nature in spite of the 
nonlocality of the fundamental laws.

8.2 In what way is classical physics contained as a limit of the quantum theory?

It has commonly been assumed that the classical level arises where ħ→0. But evidently, 
since ħ is fixed, it cannot go to zero. What we have to do is to derive the classical laws as 
approximations to the theory in which ħ is given its current value. But as we have already 
pointed out, it has to hold under certain conditions (which will be discussed throughout 
this chapter).
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With regard to this point, we repeat that it is clear that wherever the quantum potential 

can be neglected, the classical limit will hold as an approximation. For in this case the wave 
function plays no significant part in the determination of the motion of the particles, which 
then obey the simple Newtonian law

 
(8.1)

In so far as this law holds, the ontology effectively reduces to a set of particles (and of course 
ultimately, fields, as we shall see in chapter 11) obeying the laws of classical physics.

Moreover, as stated in chapter 3, there is a well-known approximation, the WKB 
approximation, which gives rise to solutions describing classical trajectories. As we have 
already pointed out, this approximation becomes valid when the quantum potential is small 
compared with the kinetic energy. One can show [4] that this requirement will be satisfied 
whenever the potential varies smoothly enough so that the change in de Broglie wavelength 
Δλ within a wavelength is small. One can also show that satisfaction of this condition will 
guarantee the smallness of the quantum potential.

We emphasise again that this criterion was developed for the special case of a wave 
going in a definite direction. However, a linear combination of such solutions corresponding 
to waves going in opposite directions will still be a solution of Schrödinger’s equation 
with the same energy. But such a linear combination will not in general have a negligible 
quantum potential even though each of the functions that makes it up does have a negligible 
quantum potential.

Suppose for example that we have a system that varies only in the x-direction and 
whose properties are uniform in the y- and z-directions. Suppose further that we have an 
electron moving in the x-direction which is bounded in a space whose edges are defined by 
a potential V(x) (which we assume to vary slowly enough so that we can apply the standard 
WKB techniques). One solution for the wave function is then

 
(8.2)

where  
Another solution is:

 
(8.3)

Each of these, of course, has a negligible quantum potential except at x=a and at x=0 
(where these are the turning points of the particle at which p(x)=0). To find the stationary 
states of the particle, we take a linear combination of the above two solutions (8.2) and 
(8.3) in which |A|=|B|, while the phases of A and B are chosen so that the wave function 
fits a decaying exponential beyond x=a and x=0. One finds that solutions are possible only 



134 The undivided universe

for certain quantum numbers, n, representing the number of nodes of a wave function 
satisfying the Bohr-Sommerfield condition (see Bohm [4]).

The solution inside the box is then

 
(8.4)

where  is the appropriate phase factor which brings about the fit.
With this linear combination we obtain a quantum potential which may be quite large. 

A simple calculation shows that this is

 
(8.5)

Since the wave function is real, the particle is at rest inside the box and its kinetic energy 
has been transformed to the energy of the quantum potential (as explained in more detail 
in chapter 4). 

To simplify the discussion we may consider the case in which the potentials become 
infinitely high at x=0 and at x=a. This is essentially a box of size a and the solutions are

 
(8.6)

It is clear for these solutions that the velocity of the particle is zero and that there are (n−1) 
nodes in the wave function at which the probability is zero. The picture according to our 
interpretation is that the particle is sitting at a particular position so that it is consistent to 
say that it never reaches a node. For small values of n this perhaps does not violate our 
intuition. But when n gets large we customarily expect that classical behaviour will result. 
Yet we can see that, no matter how large n is, we do not go to a classical limit.

Einstein [5] objected to this result because he felt that when n becomes sufficiently 
large, we should always approach a classical behaviour in which the particle is moving 
back and forth with equal probability in both directions. Nevertheless independently of our 
interpretation we can see that this is impossible with the wave function (8.6) because it has 
nodes at which the probability density is zero. If the particles were moving back and forth 
at uniform velocity these nodes would not be possible. They might however be possible if 
the particles speeded up to infinite velocity where the wave function is zero, but this would 
violate classical intuition even more than would our assumption that the particles are at 
rest. Einstein’s picture could only hold, therefore, if the quantum theory itself began to fail 
at sufficiently high quantum numbers (for example in the way that could be implied in later 
suggestions of Rosen [6], as well as by those of Leggett [7] and Penrose [8]).

As we have already indicated, however, we are exploring the hypothesis that quantum 
mechanics is universally valid, and it is therefore necessary to see whether this is coherent with 
our general experience at the classical level. Of course it is not part of the quantum theory to 
say that classical physics always holds at the large scale level (or at high quantum numbers). 
Indeed there are strong reasons to suppose that it should not hold always in this case.
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To bring this out, one could assume, for example, that the walls of the box did not 

correspond to an infinite potential, but rather to a finite, though large, barrier of limited 
thickness which could, therefore, be penetrated. In this case the system would be analogous 
to a Fabry-Perot interferometer. Therefore if electrons were incident on one side of the 
barrier, they could not only penetrate, but could also show transmission resonances for 
certain incident momenta (see Bohm [4]). These are characteristic quantum mechanical 
effects. Indeed if these effects are not found even at arbitrarily large distances and for 
arbitrarily high quantum numbers, we will have to conclude that, as Einstein has implicitly 
assumed, quantum theory itself must fail here. However, it should be noted that Tonomura 
et al. [9] have demonstrated experimentally with electrons that the quantum theory holds 
for quite high quantum numbers.

 

Figure 8.1: Deflection of two different portions of a plane wave by an inhomogeneous field 
centred at C

It is necessary nevertheless to explain why such non-classical behaviour at the large scale level is 
not more commonly encountered. At first sight one might suppose that this could be understood 
by considering the fact that our ‘Fabry-Perot’ interferometer would require extremely accurately 
machined parts and extremely accurately held positions. Clearly these will not be found in 
nature and will be very difficult to produce in the laboratory. However, this argument is not 
adequate. This is basically because the criticism raised by Einstein implies more generally that 
non-classical behaviour will be obtained whenever waves of appreciably different wave numbers 
cross. In the case of the particle in a box there are only two such waves going in opposite 
directions. But actually there is a wide variety of solutions in which many waves could cross.

For example we may have a wave function spreading over a large area with a fairly 
well-defined momentum satisfying the WKB approximation so that the particle will be behaving 
classically. Then by means of inhomogeneous forces occurring naturally, contributions 
from two different parts of the wave front may come to overlap, as shown in figure 8.1. 
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In the region, O, of overlap, the orbits will become highly irregular and the particle will 
jiggle rapidly because the quantum potential is both large and rapidly varying. Indeed a 
particle originally passing through A may be deflected while it is in the region O in such a 
way that it leaves in the beam coming from B. This means that the non-classical behaviour 
is not restricted to the region O where the quantum potential is large. Of course as we have 
shown in the previous chapter the statistical results of measurements will still come out 
consistently without violating the laws of the quantum theory. But the individual processes 
will have highly non-classical implications.

As we have remarked earlier however, such situations can readily arise in many ways. 
Indeed as we shall show, even if we consider systems as large as planets and stars, the wave 
function of the centre of mass may spread over large areas. As long as contributions coming 
from different parts of the wave front do not cross the behaviour of the objects concerned 
will be essentially classical. But an inhomogeneous gravitational field, for example, can 
bring about just such a crossing. And when this happens, the stellar or planetary trajectories 
would jiggle violently and be deflected in non-classical ways.

If the positions of these objects were measured (e.g. by telescope), such interference 
would be destroyed. However, it does not seem to be satisfactory in an ontological theory 
to obtain classical behaviour of large scale and distant objects solely with the aid of 
measurements.

8.3 Large scale objects in the classical limit

It is clear then that we need to go further to develop a theory of a classical level that arises 
naturally in the universe. This should give an ontological explanation of not only planetary 
and stellar behaviour, but also that of large scale objects in general (including, of course, 
measuring instruments).

Large scale objects in general are described by collective coordinates. Moreover if the 
classical behaviour of stars or planets would depend on measuring instruments it would 
still be necessary to show independently that the ontological interpretation of the quantum 
theory implies the possibility of having measuring instruments which will be stable and 
behave classically without the need of further instruments to establish these properties.

This question evidently has to be treated in a cosmological context. It is not necessary 
for our purposes to go all the way back to the big bang. Rather it will be convenient to begin 
with that phase of the universe that followed the inflationary period. By this time protons 
and electrons have been formed in states of high energy. But as the universe cooled down 
it became possible for atoms and molecules to form (the excess energy being given off as 
radiation which was disposed of by its spreading through the empty space created by the 
expansion of the universe). From then on as the universe cooled further, larger aggregates 
of matter were formed leading to galaxies containing stars, planets and other objects of 
this nature. Later still the temperature dropped so as to form solid matter that had a stable 
atomic structure (e.g. crystals). Whichever interpretation of quantum theory we use, this 
result will follow. For as the energy of aggregation is disposed of in the form of field 
quanta, we will finally be left with the wave functions involving stable configurations of 
fairly low energy (a detailed account of such processes will be found in Chew [10]).
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Once we have stable solid structures then we can form arrangments of matter which 

constitute measuring apparatuses and we have the possibility of leaving an irreversible 
macroscopic residue which can constitute a record held in this stable structure. In chapter 
6 we did this in terms of the discharge of an ion chamber. Another example would be a 
photographic plate which would respond to a single particle by irreversibly producing a 
set of grains of silver. It is thus clear that the existence of the observing apparatus can be 
understood in terms of our ontological interpretation.

Moreover, wherever stable solid matter is formed, each atom is localised relative to the 
others within a fairly well-defined range of the order of the interatomic spacing. Because 
the spread of the wave function is so limited, there will not be significant interference of 
contributions from different parts of the wave function (which was described earlier in 
connection with the galaxies, stars and planets). Thus there will be no problem in showing 
the classical behaviour of various parts of the earth relative to each other, and of all the 
various macroscopic objects that are attached to the earth (of course, including measuring 
apparatus, laboratories etc.).

Evidently this sort of localisation of atoms relative to each other depends on the strong 
forces of mutual interaction between them. However, when it comes to the centre of mass 
of the whole object there are in general no such strong forces. There is then no reason why 
the wave function of the centre of mass should not spread out over indefinitely large areas 
so that its various parts may come to cross in the manner described earlier with resulting 
non-classical behaviour.

One of the basic questions to be addressed is therefore that of finding out what determines 
the centre of mass wave functions of the various objects in the universe which need not be 
strongly localised relative to each other. Consider, for example, the case of galaxies, stars 
and planets discussed earlier—what determines the spreads of the wave functions of their 
centres of mass?

To answer this question we have to go back to the process in which these objects were 
formed from elementary particles. Ideally we would need to know the forms that these 
wave functions took when the particles were first created. At present there is no well-
defined answer to this question, but we may explore a range of possible answers.

Case A   If for example the particles are created with localised wave functions, the wave 
packets would spread so that we would be left with very nearly plane waves in 
each region of space. The quantum potential would be negligible except when 
parts of the waves were made to cross as discussed earlier.

Case B   The other extreme possibility is that particles are created as standing waves 
covering the whole of the closed universe (which would, for example, be 
spherical in the case of a universe described by a Robinson-Walker metric). 
In this situation the quantum potential would be large everywhere and would 
remain large as the universe expanded. Even if there were inhomogeneities 
which broke the spherical symmetry, there would still be a great deal of criss-
crossing of waves having different wave numbers and directions, so that the 
quantum potential would remain generally large. Therefore we would not have 
an approximately classical level at this stage of evolution of the universe.
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To see how a classical level may develop in both cases let us now consider what happens 
as the particles aggregate to form large scale objects. The mean momentum of the centre of 
mass will be the sum of the mean momenta of all the particles that have come together. In 
the case of approximately plane waves resulting from the spread of the original individual 
wave packets (Case A), we will obtain a well-defined momentum for the centre of mass 
while the possible positions will spread, in principle, over the whole universe.

In the case of standing waves (Case B), however, the momentum of the centre of mass 
will not be well defined, but will have a spread due to the spread of the momenta in the 
wave numbers of the original particles. If we make the reasonable assumption that the 
momenta of the different particles combine in random ways, the mean spread |δk| in the 
wave number k of the centre of mass will be  where |δk0| is the average 
spread in the wave numbers of the individual particles. The quantum potential will be of 
the order of

 
 

where M=Nm0 and m0 is the mass of the original particles. No matter how large N becomes, 
Q will thus remain more or less the same value as it would be for one atom. In a large 
system this is evidently negligible. The wave function will then be close to a plane wave (or 
more generally to a WKB approximate solution of the form  in which there is 
no significant crossing of contributions from different parts of the wave front).

To make a quantitative estimate of the spread of momenta, let us consider the extreme 
assumption that immediately after inflation the protons have a spread of wave vectors 
corresponding to a wave number m0c/ħ. With this assumption even a small object weighing 
one gram would have a spread of velocities of a few centimetres per second while an object 
as large as the earth would have a spread of velocities of 10–9 times smaller. Clearly then 
(both for Case A and Case B) the overall wave function of the whole system will take the 
form

 
 

where f(X) represents the wave function of the centre of mass and  repre-
sents the wave function of the internal state of the system. Therefore in general large scale 
objects in free space will have wave functions spreading over large areas. However, these 
objects will nevertheless behave classically, except when contributions from different parts 
of the wave front are made to overlap by the action of inhomogeneous gravitational fields. 
In this case the wave function becomes

 
 

where ψA(X) represents the beam coming from A and ψB(X) that coming from B. This wave 
function gives a quantum potential that is not negligible and we have the possibility of a 
non-classical behaviour of objects as large as stars and planets. We must evidently find 
further arguments to eliminate this possibility.
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To prevent interference of contributions from different parts of the wave front, we 

must have some natural process analogous to the making of an irreversible record in the 
apparatus as a result of a measurement. Essentially what is required is that the general 
environment be such as to allow the possibility of changes in it to take place which remain 
stable and which are different for different possible positions of the object in question. 
There are a number of ways that this might come about, but we will discuss just one of 
these. What we shall show here is that if there is a suitable radiation falling on these objects 
we can achieve our objective.

To simplify the discussion we shall begin by considering a planet that is illuminated by 
light from a single star. If the planet is far from the star in question the light will be parallel. 
The planet will therefore cast a shadow which will be essentially a cylinder extending in 
the direction of the light. Because of diffraction, some light will enter the shadow. The 
diffraction angle will be of the order λ/a, where λ is the wavelength of the light and a is the 
size of the object. Then as we move along the cylinder it will begin to fill with light and 
at a distance of a2/λ, this shadow will more or less disappear. Therefore the volume of the 
shadow is of the order a4/λ. With a typical planet, a~109 cms and λ~10–5 cms, the volume 
is ~1032 cm3.

 Figure 8.2: Shadows  etc. arising from possible positions of planet A, B etc. when 
illuminated by light from a distant star

Let us now consider two possible positions of the planet, A and B. Suppose there is 
a centre, C, of gravitation attraction which causes the two parts of the wave function 
respectively passing through A and B to overlap at O. Without the starlight we would have 
interference at O with resulting non-classical behaviour of planets centre of mass (see 
figure 8.2).

To see what happens in the starlight we must take the shadow into account. If the planet 
is at A it will have a shadow  but there will be no shadow in the path B. Conversely if 
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the particle is at B, it will have a shadow  but now there will be no shadow in the path 
A. Let us consider the case when the planet is at A, then as it moves, its shadow moves 
with it from  to, say,  as shown in figure 8.2. There will be no shadow associated 
with the path B. In order to see the effect of these shadows on the quantum potential, we 
note that the total wave function must now include not only that of the wave function of the 
planet,  but also that of the electromagnetic field as modified 
by the shadows. We will now show that it is the presence of the wave function of the 
electromagnetic field that is responsible for the quantum potential acting on the planet to 
remain small.

We have not thus far in this book given the ontological interpretation of the electromagnetic 
field. A treatment of the field is however given in Bohm [11], and a more detailed but 
simplified version using a scalar field is presented in chapter 11. We shall here discuss the 
basic principles in terms of the scalar field. Let ΛA be the wave function of the field Φ in 
the beam A. This wave function includes the effects of the shadow cast by the planet if it is 
actually in the beam A. Similarly let ΛB be the corresponding wave function for the beam 
B. The total wave function corresponding to the two possibilities shown in the figure is

 
 

The internal wave function of the planet is represented by  We make the 
reasonable assumption here that the absorption of this light by the planet will not make a 
significant change in this wave function because the planet is so large and the intensity of 
starlight is so small. Evidently this wavefunction does not depend on whether the planet is 
at A or at B.

With the arguments that are given in the appendix to chapter 11, we can show that there 
can be negligible overlap between the overall wave functions corresponding to the two 
beams. The condition for this will be seen to be essentially that each shadow contains a 
large number of quanta. When the beams cross there will then be no interference and we 
will have a classical behaviour.

This condition is in fact satisfied with the light from a single star. To see this we note that 
the number of quanta in a cylinder of volume V is equal to V/c. With our value of V~a4/λ 
and with the estimated intensity from a typical star as 104 quanta per cm2 per second, we 
obtain a total number of quanta of the order 1025. Clearly the condition for no interference 
is satisfied for planets and indeed for objects that are quite a bit smaller, even when the 
effects of the light from a single star are taken into account.

We have thus far assumed that the star which is the source of the light is at a well-
defined position and that there will be no possibility of interference with light coming 
from the star at another possible position. In effect we have been supposing that the wave 
function of the star is a small packet which spreads negligibly because its mass is so large. 
But according to our earlier argument, we cannot guarantee that such a wave function 
will have arisen by evolution from the early phases of the development of the universe. 
Therefore we must consider the possibility that even the star has an indefinitely extended 
wave function, which, however, according to our previous arguments must have a fairly 
well-defined wave number.
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But we can see this will not change our conclusion. Thus according to figure 8.3, if the 

distance AA′<<D, the change in angle of the light will be negligible and everything will 
happen as before. If, however, AA″~D, then the direction of the light will be appreciably 
different. However, interference between contributions from different planetary positions 
is only possible if there is some inhomogeneous force which could bring contributions of 
the wave function of the star from A′ and from A″ together. But these distances are so large 
that we cannot see any reasons to suppose that this could happen to any significant extent.

 

Figure 8.3: Effect of a light source at a finite distance from planet

At this point it is interesting to ask what will happen with light sources that are closer than the 
stars and therefore correspondingly stronger, e.g. the sun. Here the light will not be parallel, but 
will have a certain range of angles α. The range of the shadow is a/α but there is of course the 
penumbra that extends indefinitely with decreasing intensity. If we consider the shadow alone, 
the number of quanta in it will be the order of (a3/αc)I, where I is the intensity of the light. In the 
case of sun light, α~0.01 radians and the intensity of light will be ~1010 quanta per cm2 per 
second. For an object of the order of 1 cm in size, this will give rise to something like 1010 
quanta in the shadow. Clearly for objects of this size and down to about 10–3 cms, interference 
will be destroyed and the behaviour will be essentially classical. Moreover once interference has 
been destroyed, then the wave packet will not subsequently spread appreciably because 
the objects are so heavy. (These considerations could thus also be applied to small objects 
on the surface of the earth that have become free of the solid structure of the earth.)

We have thus far ignored the possible contribution of the penumbra to the destruction 
of interference and the resultant establishment of classical behaviour. Indeed further in-
vestigation shows that light, for example, from different parts of the sun will have its 
wave function multiplied by that of the different atoms that have emitted it. The essen-
tially parallel beams that have emanated from each region could then be treated indepen-
dently and as a result could add to the destruction of interference even when they are in 
the penumbra. Evidently there could be many other kinds of radiation that could produce 
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similar effects. All of this could decrease interference still further and could bring about 
classical behaviour for yet smaller objects.

We conclude then that with reasonable assumptions about conditions prevailing 
throughout the universe, the quantum theory implies a classical level that is independent of 
measurements made by human beings. However, it would be important to do further work 
aimed at giving a more extensive discussion of these conditions.

8.4 Illustration of the destruction of interference in terms of streams of particles

In order to give a simple explanation of how interference may be destroyed by a beam 
of light quanta, we shall here discuss a similar process in which an object is exposed to 
a stream of particles, e.g. neutrons or protons, from a distant source. (In the appendix to 
Chapter 11 we shall see that essentially the same kind of reasoning will apply to light 
quanta.)

In this example we will evidently have then a very nearly parallel beam of particles 
incident on the object in question. We will assume that if a particle strikes the object it will 
be absorbed and that otherwise there is no interaction with the object. The incident wave 
function of the nth particle will then be a plane wave λn≡exp[iknxn]. The total wave function 
of the incident particles will be

 

 

But actually the wave function of each particle will be modified because the object will 
leave a fairly well-defined shadow, limited only by the diffraction angle α~λ/a. The location 
of this shadow will depend on the location y of the object. Specifically, the wave function 
of the nth particle will be λn~exp[iknxn] except for the region of the shadow where it is zero. 
The wave function of the nth particle can then be written as

 
 

where S(y) is a function that is unity everywhere except in a cylinder of base of the order 
of a, which latter is centred at y. 

Let us now consider the wave function of the object (which corresponds to the planet 
in our previous example as illustrated in figure 8.2). Our question is whether contributions 
ψA(y) and ψB(y) to this wave function from two different regions A and B can be made to 
overlap in some region O. The net wave function representing these two contributions 
together with that of the nth incident particle will be

 
(8.7)

where λnA is the wave function of the nth particle as affected by the object at A and λnB is that 
as affected by the object at B.
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In order to make a calculation possible, let us suppose that the wave functions λnA and 

λnB are limited to some box of side L, where L is very large. Interference between the two 
contributions to Ψ in equation 8.7 will be possible only for those values of xn for which 
λnA(xn) and λnB(xn) overlap, but will not be possible for those values of xn for which one of 
these functions is zero. Since the wave functions λnA(xn) and λnB(xn) spread over very large 
areas, most of the values of xn will produce overlap, but a fraction of the order of F=a3/
αL3 of the possible values of xn will not give rise to overlap. This function is essentially the 
ratio of the volume of the cylinder whose base is the object in question and whose height 
is the distance a/α=a2/λn within which diffraction will not produce an appreciable widening 
of the shadow.

It is clear then that if we consider just one single particle there will only be a slight 
probability P0=F that interference will be destroyed, and a corresponding probability 
P=1−F that it is not destroyed. But if we consider N particles together, the probability that 
interference is not destroyed will be the product

PN=(1−F)N~e−NF  

(since F is small). Evidently NF is just the number of particles in the shadow, so if this 
number is large enough interference will be destroyed.

If the incident number of particles per cm2 per second is I and their mean velocity is V, 
then the total number of particles in the box will be L3I/V. The probability PN will then be

 
 

We can see that interference will be destroyed if I is large enough so that there is a large 
number of particles in the shadow. This criterion for negligible interference is basically the 
same as the one we give earlier for light quanta 

8.5 The extent of non-classical behaviour

We have already seen that non-classical behaviour could occur for individual particles in 
many situations in which the quantum numbers are large. Even for larger objects containing 
many particles there may still be non-classical behaviour except under conditions in which 
quantum interference is destroyed, for example, by suitable radiation. In this section we 
shall go in more detail into the nature of this non-classical behaviour.

Let us begin by considering the case of a microparticle moving in a box. This particle is 
constantly reflecting off the walls of the box. Even if these walls are smooth and regular, 
the corresponding wave function will reflect back and forth many times so that a great 
many waves of large wave number going in different directions will criss-cross. If the walls 
are irregular, this breakup into smaller waves will be even stronger. Eventually we may 
expect a nearly isotropic distribution of waves whose velocity fluctuates around a mean of 
zero. At this point there is little kinetic energy in the particle, and most of the energy will 
be in the quantum potential. Such a behaviour, which is evidently non-classical, can occur 
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with quite large boxes. This behaviour in which the microparticle has a small fluctuating 
velocity is evidently an extension of Einstein’s example of a particle in a one-dimensional 
box. It could perhaps give an approximate description, for example, of an electron in a 
metal.

In order to illustrate this behaviour in a simple case, let us consider a particle in a 
two-dimensional box of side L. We shall simplify further by neglecting the molecular 
constitution of the walls. The wave function can then be built out of a set of eigenfunctions 
of the energy of the free particle. That is

 

 

Although we are neglecting the molecular constitution of the walls in determining the 
stationary states, we can still say that the walls produce a net wave function that is a complex 
linear combination of eigenstates in which all the ψmn are involved. Let us write this as

 

 

We have already seen that for a single eigenfunction ψmn, the particle is at rest. But this need 
not be so for a general linear combination. Indeed the velocity of the particle is 

 

 

With ψ*ψ=ρ we can write for the component of the current

 

 

and similarly for υy.
It is clear that for the general Cmn this does not vanish. To understand why this is so we 

may first note that if we take different eigenvalues of the energy we will obtain a probability 
density that is a function of time. This evidently implies that there is a net current. But to 
obtain such a current, different eigenvalues of the energy will not be needed as long as these 
are degenerate. For example we can consider a system with spherical symmetry in which 
there are three eigenfunctions of the energy corresponding to a p-state. If these are taken 
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as real, they are proportional to x, y and z. For each of these wave functions, the velocity is 
zero, but for the linear combination x+iy, the z-component of the angular momentum is ħ 
corresponding to a circulation of the particle around the centre.

To return to the case of a particle in the box, we see from the above equation that the 
current (and therefore the velocity) is constituted of a large number of terms, each of which 
is small. As the particle moves, the sin and cosine terms will change rapidly, especially for 
large m and n. The situation is in someway similar to that of the Lissajous figures because 
υx and υy will contain many terms of very high frequency which are in complex phase 
relations with each other. Although the wave numbers are in integral relationship here, 
these are so high that we are approaching the case in which the frequencies of the x- and 
y-motions are not commensurable. The velocity is thus built of many terms whose phases 
will have extremely complex relations with each other.

Moreover for a real box, there would no longer be a simple integral relationship of the 
wave numbers of the eigenfunctions of the Hamiltonian. Any irregularity would destroy 
this, as would also a change to a more complex shape of the box. This would imply that 
the frequencies and wave numbers were irrationally related. As is well known, under these 
conditions in which a motion is constituted of many submotions with very complex phase 
relationships, the particle will follow an irregular trajectory which can eventually come 
arbitrarily close to any point in the box. Indeed even if we restricted ourselves to a linear 
combination of eigenfunctions of the same energy, this sort of result would still follow. In 
this way we see that going only to the two-dimensional case, we obtain for eigenfunctions of 
the energy a quasi-chaotic movement. As we shall show in the next chapter, this conclusion 
is strengthened when we go to more complex systems.

Even if such objects are suspended in liquids or gases, the possibilities of interference 
will be limited because their mobilities are so low. It is clear that there will be an interesting 
area of study in the mesoscopic range, between the classical and quantum domains. It is 
perhaps significant that in this range the simplest forms of life are to be found.

Of course if we try to use precise measurement to observe the behaviour of such objects, 
they will be put into well-defined positions and will behave essentially classically, provided 
that they are heavy enough so that their wave packets do not spread significantly during the 
period of the experiment. This means that the study of the mesoscopic region will require 
more subtle means than can be provided by exact measurements of the usual kind.

8.6 The quantum world and its classical sub-world

We are now in a position to give at least the general outlines of an overall world view that 
is implied by our interpretation of the quantum theory.

Our first experience is, of course, of a world that is revealed to us fairly directly by our 
senses in relation to our outward actions and inward reflections in thought. The immediate 
experience in this world is that which is described by what is called common sense, but 
later, as Bohr has pointed out, this is refined, where necessary, to the more exact description 
of classical physics. Within the domain of such experience it may be said that this world is 
manifest. According to its Latin root, the word manifest would signify what can be held in 
the hand. More generally it is what can be held in the hand, the eye, and, of course, scientific 
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instruments. Its basic characteristic is that it contains certain relatively stable structures that 
make the holding possible. These structures must not only be relatively stable, but also 
essentially local. Everything in this world can be ultimately constituted of such structures 
which are outside of each other in every sense and which interact only locally.

Without such a world we would not be able to make sense of our observations of matter, 
nor to assign causes in any orderly way. Indeed it is for this reason that there is a natural 
reluctance to consider ideas such as non-locality and indivisible wholeness, i.e. non-
separability, into independently existent component parts. 

When we come to the underlying quantum world, we find that it has a radically different 
nature. To be sure we still assume a particle, which at first sight would appear to be what 
is also done in classical physics. But we now say further that this particle is profoundly 
affected by the wave function, i.e. through the quantum potential and the guidance condition. 
The action of the quantum potential depends only on its form and not on its magnitude, 
so that its effect may be dominant even when the wave intensity is small. This implies the 
possibility of a strong nonlocal connection of distant particles and a strong dependence 
of the particle on its general environmental context. The forces between particles depend 
on the wave function of the whole system, so that we have what we may call ‘indivisible 
wholeness’. This means that for different wave functions we can have radically different 
connections between particles (not expressible, for example, in terms of a predetermined 
interaction potential). Thus there is a kind of objective wholeness, reminiscent of the 
organic wholeness of a living being in which the very nature of each part depends on the 
whole.

All this behaviour is very different from what is to be expected classically. Indeed as 
we have already explained in chapter 3, classical physics depends not only on Newton’s 
laws of motion for the particles, but also on the nature of the potentials acting on them. The 
quantum potential implies so fundamental a difference in the behaviour of particles that we 
cannot regard the latter in general as remotely classical under most circumstances.

Because of nonlocality, quantum jiggling under quantum interference conditions and 
other quantum properties to which we have alluded, we may say that the quantum world 
is subtle. According to the dictionary this means “rarified, highly refined, delicate, elusive, 
indefinable”. Its root meaning is based on the Latin subtexlis which signifies “finely 
woven”. Clearly the quantum world as we have described it cannot be held in the hand or 
in any other way. The very effort to hold it, e.g. in measurement, produces thoroughgoing 
unpredictable and uncontrollable changes in it. Each element participates irreducibly in all 
the others. The absence of mutual externality and separability of all the elements makes 
this world very elusive to the grasp of our instruments. It slips through the ordinary ‘nets’ 
that we have devised to hold it. Nevertheless we are proposing that it is real and indeed that 
it constitutes a more basic reality than does the classical ‘world’. Indeed as we have shown, 
this classical ‘world’ comes out of the theory as relatively autonomous. This autonomy 
arises wherever the quantum potential can be neglected so that the classical world can be 
treated on its own as if it were independently existent. But according to our interpretation 
it is actually an abstraction from the subtle quantum world which is being taken as the 
ultimate ground of existence.

In the quantum ‘world’ there is no way to obtain an objective public display of results 
because everything in it is so irregularly mobile, subtle and mutually interdependent. But in 
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the classical sub-world, events can happen that are negligibly affected by our measurements 
and observations. This sub-world includes not only particles, but also fields. We have not 
yet discussed the fields (though, as we have already pointed out, this will be done in some 
detail in chapter 11). Nevertheless we can say that the movement of classically describable 
distribution of charge will produce classically describable movements of fields.

This world of fields and particles is what conveys information to our senses in a well-
defined way. Indeed we know of no other conditions in which this could happen. For 
example it is well known that the eye can be sensitive to a few quanta at a time, but the 
reception of a small number of quanta gives only the vaguest sense of optical stimulation. 
Meaningful perception requires a large number of quanta and therefore, along the lines 
we have already explained this will imply an essentially classical behaviour. Meaningful 
communication between people also requires classically describable processes involving 
a large number of quanta. Thus it is not that we are assuming that the brain responds only 
to the states of particles and not to their wave functions. Rather we are simply calling 
attention to the observed fact that meaningful sense perception and communication has to 
go through the classical level in which the effects of this wave function can be consistently 
left out of account.

But, of course, this does not mean that we cannot learn about the quantum world. 
Instead, as we have shown, for example, through a process of amplification and recording 
in the stable structure of a measuring apparatus, the overall quantum ‘world’ can manifiest 
itself in the more limited classical ‘sub-world’.

In demonstrating this possibility we have not had to assume any kind of ‘cut’ between 
these two ‘worlds’ such as that supposed by von Neumann. Rather there is only one overall 
quantum world which contains an approximately classical ‘sub-world’ that gradually 
emerges under conditions that have been described throughout this chapter. As we have said 
earlier we do not believe that this kind of result has been achieved by other interpretations 
without making assumptions that go beyond the scope of the current quantum theory.

Moreover it is significant to note that it is just the most characteristic quantum properties 
such as nonlocality and undivided wholeness that bring about the classical world with its 
locality and separability into distinct components. Thus for example, in a measurement it is 
the nonlocal quantum potential produced in interaction with what may be a distant piece of 
apparatus that separates the wave function of the ‘observed system’ into distinct channels 
that can be treated locally. Similarly, with planets, it is the wave function of the incident 
radiation with its distant shadow that destroys interference between contributions from 
different parts of the wave front and thus brings about a simple local behaviour.

In a certain sense we could say that the overall quantum world measures and observes 
itself. For the classical ‘sub-world’ that contains the apparatus is inseparably contained 
within the subtle quantum world, especially through those nonlocal interactions that bring 
about the classical behaviour. In no sense is the ‘observing instrument’ really separate 
from what is observed. The relative autonomy of the classical level that we have already 
discussed is then what makes it possible for the total quantum world to manifest and reveal 
itself within itself in a measurement. Thus in contrast to the classical notion of measurement 
we should regard a quantum measurement as a manifesting process.

How do we understand what happens when the human being perceives the classical 
world with its implications, that may simultaneously manifest and reveal the quantum 
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world? The first step is through the senses, which as far as physiological sciences now know, 
can be explained classically. Sensory impulses are then carried into the brain, and even here 
a great many processes have been studied which likewise can be understood classically. 
Most neuroscientists seem to believe however that the brain can be completely treated in 
terms of classical concepts. At present this is evidently a speculative assumption. However, 
some neuroscientists, notably Eccles [12], have suggested that quantum processes may 
be important in understanding the more subtle activities of the brain. For example as has 
already been pointed out, we know that retinal cells respond to a few quanta at a time and 
that this response leads to a multiplication of their effects to a classical level of intensity. 
But the retina is just an extension of the brain. There could evidently be other parts of the 
brain in which such a sensitivity may exist, e.g. in certain kinds of synapses. If this were 
the case, then the brain would be a system that could, like a measuring apparatus, manifest 
and reveal aspects of the quantum world in the overall processes. Such quantum sensitivity 
would imply that in more subtle possibilities of behaviour of the brain, a classical analysis 
would break down.

All this means that as the processes of perception unfolds into the brain, it may as it were 
connect to the subtle quantum domain which latter may in turn reconnect to the classical 
domain, as outgoing action is determined through amplification of quantum effects.

Moreover it does not necessarily follow that quantum effects will only be of importance 
in the domain of very small energies. For as we have seen it is just through certain kinds of 
nonlocality that locality can emerge, e.g. in a measuring apparatus. Similar nonlocality may 
be required for the brain to have a local and essentially classical sub-domain of function. 

Finally there is no reason to believe that quantum theory is an ultimate truth. Rather, 
like other theories, it probably has a limited domain of validity. Indeed various authors 
including ourselves have already suggest new theories containing quantum theory as an 
approximation within it and some of these will be discussed in chapter 15. Once again 
it may well be that a fuller understanding of the brain will require such more extensive 
theories going beyond the quantum mechanics.
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 Chapter 9  
The role of statistics in the ontological interpretation of 

the quantum theory

9.1 Introduction

In our interpretation, the primary significance of the wave function is that it is a quantum 
field which determines information that is active on the particles in each individual system. 
However, we also say that the wave function determines the probability density in a 
statistical ensemble through the relationship P=|Ψ|2. But as already pointed out in chapter 
3, section 3.4, this is regarded as a secondary significance of the wave function. In principle 
there is no reason why the probability could not be different from |Ψ|2, even though it is 
equal to |Ψ|2 in all cases that we have encountered so far.

What we have to explain then is why P should tend to approach |Ψ|2 in typical situations 
that are currently treated in physics (i.e. situations in which the quantum laws are valid). 
In this chapter we shall give such an explanation showing that one can understand how an 
arbitrary probability density, P, may approach |Ψ|2 even on the basis of our deterministic 
theory because the latter leads to chaotic motions under a wide range of conditions. We 
shall then show how the overall statistical approach may be generalised to include, not only 
what are usually called pure states, but also what are usually called mixed states (which 
are at the basis of quantum statistical mechanics). Finally we shall extend this study and 
show how the approach of P to |Ψ|2 could further be justified on the basis of an underlying 
stochastic process in the movement of the particles. 

9.2 Chaotic behaviour of particles in many-body systems

We have already seen in chapter 8, section 8.5 that even for a single particle in a two-
dimensional box, we obtain a fairly complex and chaotic motion. With N particles in a 
three-dimensional box, this will evidently become still more chaotic.

To illustrate what happens in such cases, let us consider a cubic box of side L. However, 
instead of supposing that the walls are impenetrable, we shall make the more realistic 
assumption that the particles can actually touch the walls where they could interact with 
its constituent atoms. We shall not, however, treat these interactions in detail, but we shall 
merely suppose that, as in chapter 8, section 8.4, they lead to a complex linear combination 
of stationary wave functions. To simplify calculations (which are intended to indicate what 
sort of thing may happen), we also assume that the wave functions are periodic with period 
L. For a single particle the basic eigenfunctions are exp[ik·x]exp[−iωkt] where kx=2πl/L, 
ky=2πm/L and kz=2πn/L, and where ωk=k2/2m.

For the N-particle system, the eigenfunctions of the energy are exp [i∑n kn·xn] where 
xn represents the position of the nth particle and kn is proportional to its momentum. The 
general wave function can then be written as
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(9.1)

For equivalent particles, the Cs will have to be restricted to anti-asymmetric functions. But 
here we need not specify what is the symmetry as this will be included in the values of C.

The coefficients C can be very complex, for example interaction with the molecules 
constituting the walls may produce interfering combinations of wave packets which will 
involve a very wide range of possible values of k in the manner discussed in chapter 8, 
section 8.3. We may expect that after the system has been left by itself for a long time, there 
will indeed be such a linear combination.

If we write ρ=|ψ|2 and let υs be the velocity of the sth particle, we get

 
(9.2)

This then gives 

 

(9.3)

where  
It is clear that the above is built out of a very large number of terms each of which 

oscillates with a phase that is in effect random relative to those of the others. The point 
in configuration space corresponding to x1…xn moves in a chaotic way through all the 
configuration space that is accessible to it.

Intuitively we could expect that for statistical averages, this motion would be equivalent 
to some kind of probability distribution in the configuration space. What would this 
probability distribution be?

To enquire into this, we first note that the function ρ=ψ*ψ satisfies a conservation 
equation in configuration space which is

 
(9.4)

Of course this does not mean that ρ itself is necessarily the probability. We may therefore 
write this probability density as P=ρF. By definition, P satisfies the same conservation 
equation as ρ. We then obtain

 
(9.5)
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This means that F is a constant of the motion. Suppose for example that we started with a 
distribution which was localised in an element of configuration space ΔΩ=(Δx1, Δx2…ΔxN). 
This element is chosen to be small relative to macroscopic dimensions, but large in relation 
to the wavelengths implied by a typical k vector. Because F is a constant of the motion, we 
can see what happens to the element ΔΩ by following the various particle trajectories on 
its boundaries. Consider for example two trajectories initially separated by δx. These will 
correspond to large phase differences between most of the contributions to the velocity 
in equation (9.3). Therefore the two trajectories will correspond to very different quasi-
random paths that will in general lead them very far from each other. It follows that a 
simple element ΔΩ will turn into a very complex, long drawn out and enmeshed thread-like 
structure. Because any trajectory eventually comes near to any given point in configuration 
space, it also follows that in the sense of a coarse grained average, this thread-like structure 
will move in such a way as to more or less cover the whole of this space. Therefore in 
any process that does not depend on the complex and chaotic fine details of the motion, 
F may be taken as effectively a constant. In such a process we may say the probability is 
effectively ρ=|ψ|2.

There are a very wide range of conditions in which the sort of process described above 
may take place. These include metals, gases, plasmas etc., so that not only in the laboratory, 
but also in the stars and interstellar space, we may reasonably expect that quantum theory 
itself contains processes that tend to produce distributions near P=|ψ|2. Therefore it is not 
necessary to regard P=|ψ|2 as an assumption as is done in conventional interpretation. 
Although our interpretation has the additional assumption of particles, this is balanced by 
the fact that it does not require the usual assumptions on probability. So at least on the basis 
of a formal count of the number of assumptions, we cannot say that either interpretation is 
favoured over the other by the principle of Occam’s razor.

It is instructive at this point to consider once again our example of electrons emerging 
from a metal and going through a set of collimating slits and velocity selectors to enter a 
slit system in an interference experiment. To simplify the discussion, suppose we have cold 
emission of electrons brought about by a strong electric field near the surface of the metal. 
This combined with the wave function gives rise to a barrier of finite width which can 
be penetrated. The wave function (9.1) implies that electrons are constantly striking this 
barrier and a small part of the wave function penetrates as explained in chapter 5, section 
5.1. Some electrons will go through if their initial conditions are right. If an electron does 
go through, its wave function can then be regarded as simply the part that has penetrated, 
multiplied by the wave function of the metal containing the remaining electrons. It is 
therefore factorised so that the metal and the electrons behave independently from this 
point on.

Let us now consider an ensemble of cases in which electrons have left the metal in the 
way described above. There will be a distribution of electrons, each of which has its own 
wave function and its own initial position. Because the electrons are independent of each 
other and of the metal, we can follow the propagation of each of their wave functions 
according to Schrödinger’s equation for a one-body system. This implies that they will 
move onward and pass through the collimator and velocity selector. When they have 
done this all the electrons will have wave functions of practically the same form. Because 
the distribution P=|ψ|2 is also propagated by Schrödinger’s equation, it follows that our 
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statistical ensemble of electrons will enter the slit system with the probability P=|ψ|2 where 
ψ is the common wave function of all these electrons. In this way we understand how the 
ordinary probability distributions arise through the chaotic motions of the particles in their 
source and through the selection of a common wave function by the apparatus that prepares 
the experimental ensemble.

9.3 Statistics of wave functions

In the previous section we have discussed a case in which electrons were selected so that 
they all have the same wave function. This corresponds to what has commonly been called 
a pure state. But this state is still a statistical distribution, since it refers to an ensemble 
of particles with different positions even though they have wave functions of the same 
form. But is it actually appropriate to call this ensemble a ‘state’? For this word generally 
connotes some property of an individual system rather than of a selected collection of 
systems. In the interests of clarity it would perhaps be better to call this collection of 
particles a pure ensemble rather than a pure state.

Suppose however that we have a situation in which electrons are selected by a procedure 
that does not determine the wave function very precisely, e.g. the collimating slits are wide 
and the velocity selectors permit a large range of velocities to go through. In this case the 
wave function itself will in general be significantly different for each particle. In terms 
of our example of electrons coming out of a metal, we can see that the wave function in 
the metal contains effectively a random distribution of eigenfunctions of the total energy. 
Electrons will therefore emerge with some statistical distribution of wave functions, as 
well as of particle positions. This will correspond to what is commonly called a mixed 
state, although we shall, in accordance with our proposed terminology, call it a mixed 
ensemble.

The distinction between pure and mixed ensembles clearly applies only in a statistical 
context. An individual system is described neither by a pure nor by a mixed ensemble. 
Rather it is characterised by specifying the wave function and the positions of all the 
particles in the system (as well as values of the relevant field variables). Thus, for example, 
the state of the universe has to be understood in this way because we are not assuming an 
ensemble of universes.

Any quantum experiment always involves a statistical selection of similar sub-systems 
within the universe. Such a selection will give rise, in the way just described, either to a 
pure or to a mixed ensemble. More generally under certain conditions a similar selection 
might even take place naturally so that, for example, a set of portions of an interstellar 
plasma might be treated in terms of suitable mixed ensembles.

Our basic concept is, however, that for each member of the ensemble the wave function 
has some definite form to which we can apply our interpretation of the quantum theory 
in the usual way. Up until now we have been discussing in this book only the case of a 
pure ensemble for which averages are calculated by integrating the probability density 
P=|ψ|2 over all the particle positions. However, in a mixed ensemble, the wave function is 
distributed over a range of possible forms. The statistical properties of such an ensemble 
will have to be calculated by averaging over the distribution of wave functions, in addition 
to averaging over the particle positions for each wave function.
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The general wave function may be represented by an expression in terms of an 
orthonormal basis which, for convenience, we shall take to be eigen-functions of the 
energy. In the previous section we did this for free particles in a box and the wave function 
was given by equation (9.1). More generally we may write

 

 

where E is the energy and α runs over all the states with the same energy. Any individual 
system must have a wave function described by a particular set of values of cEα. It will be 
useful also to write

 (9.6)

so that

 
(9.7)

If we have an ensemble of wave functions, there will have to be a corresponding probability 
distribution of the REα and the  To describe this distribution we shall introduce the 
concept of wave function space. A point in wave function space is determined by all the 
cEα, or alternatively by all the REα and  Each individual system then corresponds to a 
point in wave function space.

Let us now define the element of volume in wave function space. Writing cEα=uEα+ivEα, 
we obtain for this element

 
(9.8)

Since  and since  we have 

 
(9.9)

The mean number, dZ, of systems in this element is then

 (9.10)

where  is the probability density of systems in wave function space.
For a given wave function ψ, physical averages will evidently be determined by 

quantities such as
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(9.11)

If we have a statistical distribution of wave functions, we evidently have to average over 
this ensemble too. We then obtain

 
(9.12)

Let us define

 
(9.13)

and

 
(9.14)

We then obtain

 (9.15)

From this it follows that ρ is the usual density matrix since all averages are obtained from 
it in the usual way.

All that we have said holds both in our interpretation and in the conventional 
interpretation. For thus far we have not used the assumption of a definite particle position. 
In both interpretations ρ has only an essentially statistical significance. We have to 
emphasise, however, that in our interpretation the particle velocity in each individual case 
is determined by the actual wave function for this case which is 

 
 

Writing

 
 

we obtain the following expression for the momentum p(x) at the point x
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where

 
 

Clearly the momentum for each case depends on all the coefficients cEα which determine 
the wave function for that case. The probability density  then 
evidently implies some corresponding distribution over the momenta p(x). If we carry out 
this average we will obtain the average momentum density

 
 

 will therefore give only a statistical average of the momentum over the various 
wave function coefficients.

Although the density matrix is sufficient to determine, not only the average of the 
momentum, but all relevant physical averages over the ensemble, it evidently does not 
determine the probability distribution  itself. That is to say, 
physical averages are extremely insensitive to the detail of the distribution P. Indeed it 
is clear that to a given density matrix, a very wide range of such distributions is possible. 
Therefore within the framework of the statistical mechanics of quantum theory, the function 
P is highly ambiguous. Yet conceptually it is, in principle, determined for each ensemble. 
It is true that in doing any calculations, it is not necessary to say anything about P over 
and above what is said about the density matrix. Yet both in the conventional interpretation 
and in our interpretation, conceptual clarity requires the notion of a probability distribution 
in wave function space. In our interpretation this is clearly needed because we have to 
suppose the wave function has a given form ψ=Reis before we can say what is the particle 
velocity,  We then consider a statistical distribution of such forms. In the usual 
interpretation the basic postulate also begins with the wave function and the density 
matrix is derived from this. The density matrix is not a fundamental concept in any of the 
interpretations of the quantum theory (though some, such as Prigogine [1] and Hawking 
[2], have proposed new theories which are extensions of quantum mechanics in which the 
density matrix does play a fundamental role).

To illustrate the ambiguity of the statistical distributions underlying the density matrix, 
let us consider an atom of total angular momentum ħ. In the z-direction, for example, the 
three possible eigenfunctions of the angular momentum will be denoted by ψj(x) with j=−1, 
0, +1. The general wave function may be written as

 (9.16)

The probability distribution in wave function space can then be written as 
 The density matrix is then
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(9.17)

If P does not depend on  this signifies random phases. In this case the density matrix 
reduces to

 

(9.18)

This is evidently diagonal in the angular momentum quantum numbers j. If we further 
assume that the distribution is a symmetric function of …Rj…, all the  will be the same 
and the density matrix will be

 
(9.19)

A very wide range of P(…Rj…) can evidently lead to the above density matrix. This matrix 
has an isotropic significance because it takes the same form even if we choose our z-axis 
in some other direction. This means that the distribution of angular momenta obtained 
in a measurement will be independent of the orientation of the apparatus. But from this 
distribution we cannot even say that the original P(…Rj…) is necessarily isotropic, since, 
as we have seen, these results follow merely from the symmetry under interchange of any 
pair of variables Rj and Rk. More generally it is evident that from the observable distribution 
of the results of measurements, we can say very little about the details of the distribution 
over the …Rj….

To further bring out the ambiguity of the P(…Rj…), suppose that we had three ensembles 
in each of which the z-component of the angular momentum was well defined to be −1, 0, 
+1, respectively. If these are mixed with equiprobability, this will give rise to the diagonal 
density matrix (9.19). But suppose the mixed ensemble was formed by having a sequence 
in which +1 is always followed by 0 and this by −1, which in turn is followed by +1, and 
so on. The mixed ensemble would still imply isotropic averages, so that an experimenter 
would obtain the same statistical distribution no matter in which direction he measured the 
spin. Yet if he chose to measure only every third member of the ensemble, he would obtain 
a non-isotropic result corresponding to a spin in the z-direction of +1, 0 or −1. But the 
density matrix itself for the mixed ensemble does not show any sign of such a possibility. 
It is thus clear that many different physical situations may give rise to the same density 
matrix for the same overall ensemble.

Even if the various sub-ensembles are chosen by a random process this may still hold. For 
example, one could use a random number generator to determine which of the above three 
sub-ensembles are chosen to be fed into the mixed ensemble. An experimenter who knew 
the order determined by the random number generator could then obtain a non-isotropic 
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result for the measurements of the angular momentum. Of course in natural situations, we 
cannot know how such a random selection occurs and in such cases we will always obtain 
an isotropic result. But this does not change the fact that a given density matrix leaves open 
a vast range of physical states that could give rise to it.

There may be yet further ambiguities in the physical state underlying the density matrix. 
Thus in many cases, our ensembles have come from larger systems, such as, for example, 
the electrons emerging from a metal. In principle there may still be correlations of one kind 
or another between the electrons of interest and those left in the metal. To be accurate, we 
should therefore base our considerations on the larger system containing both of these. 
Hence we should start with a probability distribution over the wave function coefficients 
of the combined system to form a corresponding density matrix for this combined system. 
We may write this as ρ(x…, y…, x′…, y′…) where y represents the coordinates of electrons 
left in the metal.

As long as we are concerned only with those electrons that have emerged from the 
metal, we can simplify the treatment by integrating over the co-ordinates of the electrons 
that are left in the metal, while equating y with y′. This will give us a reduced density matrix 
ρ(x…, x′…) from which the statistical properties of the electrons that have left the metal 
can be calculated. (This sort of density matrix has, for example, been used by Feynman 
[3].) As we have already indicated, the original density matrix may contain correlations of 
all kinds, including, for example, EPR correlations, but these no longer appear explicitly in 
the reduced density matrix, although their effects are indirectly taken into account. 

9.4 The density matrix as determining all the physically significant results

We emphasise then that the density matrix, in general, contains a condensation of 
information in which most of the details of the individual system do not appear, but which 
contains just that information which is relevant statistically. In particular the density matrix 
determines, not only the statistics of all processes of measurement and of all processes 
of transition in general, but also that of large scale manifestations of the microlevel, and 
ultimately all collective large scale averages, the latter being the basis of the description of 
the manifest world discussed in chapter 8.

Firstly we see from equation (9.15) that the density matrix determines the statistical 
results of all measurements. To show how it determines the statistics of transition processes, 
let us, for example, once again consider the case of cold emission from a metal through 
barrier penetration. This will, in general, give rise to a mixed ensemble described by a 
suitable density matrix in the manner that we have described earlier. (With the aid of further 
selection processes through collimating slits etc., we can, of course, approach as close as we 
please to a pure ensemble.) Each individual member of the mixed ensemble corresponds to 
a well-defined wave function, ψ, with a further ensemble of particle positions P=|ψ|2. For 
such a wave function, the probability of transition can be obtained by integrating the part 
of |ψ|2 corresponding to final state over the particle positions. We then have to integrate 
this over the distribution of wave functions. The final result will then be the same as that 
obtained by starting with the initial density matrix and integrating the trace of the final 
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matrix over the ensemble corresponding to the final set of possible results of the transition 
process.

Another important physical significance of the quantum theory is that it determines 
probabilities of large scale manifestations of microsystems. We have already given an 
example of this in chapter 6, where we discussed an ion chamber in which a single atom 
could initiate a cascade leading to a current of macroscopic magnitude. Such a process 
depends on an unstable situation created by the electric field which allowed the cascade 
to develop and eventually produce a large scale result. But this sort of process does not 
require an observing apparatus or any other set of conditions arranged by human beings. 
For example, in an interstellar plasma there could be a strong electric field in which 
individual electrons could initiate such cascades. In all these cases, the probability of 
any given fluid distribution of the macroscopic currents would depend ultimately on the 
ensemble of particle positions in the atoms and the ensemble of wave functions of these 
atoms. However, this dependence is such that the net statistical result could always be 
obtained from the density matrix in the usual way.

Let us now come to the large scale averages of the collective variables themselves. 
As we have already pointed out, the variables will include the energy, momentum and 
angular momentum of the whole system and of its relevant sub-systems, as well as certain 
collective functions of the position (such as centre of mass and Fourier coefficients of the 
particle density which describe sound waves). Typically at the large scale level, systems 
will be close to stationary states. It will therefore be convenient to express wave functions 
in terms of eigenfunctions of the energy, ψEα(x).

We begin with a pure ensemble. The general wave function for such an ensemble is 
then

 
 

The mean value of the energy is

 (9.20)

But a typical large scale system has to be described by a mixed ensemble (e.g. because 
it is generally abstracted from a larger context in the way that we have already 
discussed). Let the probability distribution of wave functions in this mixed ensemble be 

 The density matrix will then be

 
(9.21)

In general this density matrix is diagonal as a function of E, because the phases will be 
random. We may always choose a representation in which it is also diagonal in terms of α 
and α′. We therefore write
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 (9.22)

We then obtain

 

(9.23)

To illustrate how such averages determine physical properties, let us consider a collection 
of particles in a box constituting a perfect gas, assuming periodic boundary conditions 
for convenience. The general wave functi11111on for such a system is given by equation 
(9.1). 

A typical eigenfunction of the energy is exp [i ∑nkn·xn]. The energy corresponding to 
this eigenfunction is

 

 

For a given particle, kx=2πl/L, ky=2πm/L and kz=2πn/L.
We can apply the above to calculate the pressure in a box, which is

 

 

With V=L3, we have

 
(9.24)

As the box expands, the energy decreases, and a simple calculation shows that

 (9.25)

where  is determined from the density matrix as tr(ρE).
The above shows how typical macroscopic properties will follow from the density 

matrix. For the case of we  do not need to know the precise form of the density matrix to 
obtain the relationship between ρ and  that we have just calculated. But more generally 
to treat thermal properties, we need a more detailed knowledge of ρ. It is well known that 
for thermodynamic equilibrium, ρ is proportional to e−E/kT If we write
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(9.26)

where ψ is the normalisation factor for ρ, we get

 (9.27)

 (9.28)
where

In the well-known way we can obtain all the thermodynamic averages from the free 
energy ψ.

The problem of justifying that in a state of thermodynamical equilibrium,  is 
essentially the same in our interpretation as it is in the conventional interpretation. Various 
treatments of this problem have already been given. (See, for example, Tolman [4].) 
However, in this book it is not our main purpose to discuss quantum statistical mechanics, 
but rather to focus on the fact that an ontological interpretation of the basic quantum theory 
is possible. What we have done in this section is to show the general lines along which one 
can include quantum statistical mechanics within the framework of our approach.

9.5 The stochastic explanation of quantum probabilities

We have thus far been explaining quantum probabilities in terms of chaotic motions that are 
implied by the quantum laws themselves, with pure ensembles representing chaotic motions 
of the particles and mixed ensembles bringing in also chaotic variations in the quantum 
field. Whenever we have statistical distributions of this kind, however, it is always possible 
that these chaotic motions do not originate in the level under investigation, but rather that 
they arise from some deeper level. For example, in Brownian motion, small bodies which 
may contain many molecules undergo chaotic velocity fluctuations as a result of impacts 
originating at a finer molecular level. If we abstract these chaotic motions and consider 
them apart from their possible causes we have what is called a stochastic process which is 
treated in terms of a well-defined mathematical theory [5]. We can have two attitudes to 
such a stochastic process. The first is that it is a result of deeper causes that do not appear 
at the level under discussion. The second is that there is some intrinsic randomness in the 
basic motions themselves. In so far as we apply the ordinary mathematical treatment, we 
need not commit ourselves to either attitude. But of course, if we are thinking of possible 
models for the process then our attitude may make a difference, because the assumption 
of deeper causes implies that the stochastic treatment will break down at the finer level at 
which these causes are operating. (We shall discuss this possibility in chapter 14.)

A stochastic explanation of the quantum theory along these lines was first suggested by 
Bohm and Vigier [6], who proposed a sub-quantum mechanical level which would bring 
about, chaotic behaviour of the particles. Later a similar theory was proposed by Nelson 
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[7] which, however, had certain important differences which we have discussed in detail in 
a subsequent paper (Bohm and Hiley [8]).

The basic assumption of Bohm and Vigier was that the velocity of an individual particle 
i is given by

 
(9.29)

where ξi(t) represents a chaotic contribution to the velocity of that particle which fluctuates 
in a way that may be represented as random but with zero average. This means that in the 
causal form of ontological interpretation that we have given thus far, we should regard 

 as the average velocity of the particle i rather than as its actual velocity. It is 
through this average velocity that the quantum potential comes in. For as we have shown 
in chapter 3, if the average velocity

 
(9.30)

and if ψ=Rexp[iS] then Schrödinger’s equation implies that

 
(9.31)

The stochastic process simply adds the random motion ξi(t) so that

 
(9.32)

However, as we shall see, in that branch of mathematics known as stochastic theory, it 
is not necessary to use explicitly the above expression for the acceleration and it will be 
sufficient to start with equation (9.29) from which equation (9.32) follows in the way 
described above.

What stochastic theory typically does is to begin with a statistical ensemble of particles 
which are assumed to have some probability distribution given by P(x, t). In such a theory, 
the notion of probability that is used is entirely classical and has nothing whatsoever to do 
with the quantum mechanical subtleties involved in the uncertainty principle and in the 
‘collapse’ of the wave function in the conventional interpretations of quantum theory.

What we want to do here is to begin by assuming that our probabilities likewise have no 
intrinsic relation to the wave function and that they are simple ‘classical-like’ probabilities 
in the kind of ensemble that is treated so widely by standard stochastic theory. However, 
our aim in doing this is to determine the properties of the random motions described by ξi(t) 
so that an arbitrary initial ensemble with a probability distribution P(x, t) will approach an 
ensemble with a probability distribution P(x, t)=ρ(x, t)=|ψ(x, t)|2 after a suitable interval 
of time. We then suppose that under typical conditions obtaining in quantum mechanical 
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measurements, the interval of time will have been long enough so that the probability 
distribution will be given by |ψ(x, t)|2. In this way we understand the fact that while P(x, t) 
and |ψ(x, t)|2 are basically independent concepts their numerical values will experimentally 
turn out to be equal in quantum mechanical experiments. In addition of course the chaotic 
processes occurring at the quantum level independently of the stochastic process which we 
have already discussed in this chapter will then contribute further to bringing this result 
about.

9.6 Detailed mathematical treatment of the stochastic model

To make a detailed treatment of the stochastic process, we shall assume that, whatever its 
origin may be, it can be represented as simple diffusion. To illustrate what this means we 
shall first consider a classical context in which we treat the diffusion of Brownian motion 
particles in a gravitational field using the simple theory of Einstein. If P is the probability 
density of particles, then there is a diffusion current

 (9.33)

where D is the diffusion coefficient. If this were all there was, the conservation equation 
would be

 
(9.34)

and clearly this would lead to a uniform equilibrium distribution. However, as Einstein 
showed, in a gravitational field in the z-direction there is what he called an osmotic 
velocity

 
(9.35)

The conservation equation then becomes

 
(9.36)

For the equilibrium distribution, ∂P/∂t=0, so that

 
(9.37)

which is the well-known Boltzmann factor.
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The picture implied by the Einstein model of diffusion is that the particle is drifting 
downward in the gravitational field and that the net upward diffusive movement balances 
this to produce equilibrium.

It is worthwhile to provide a still more detailed picture of this process. To do this let us 
consider a simple one-dimensional model in which there is a unique free path λ and a unique 
speed υ. We assume further that after collisions the velocities are randomly distributed in 
positive and negative directions while the speed is still υ.

Let us now consider two layers which are separated by λ. The net diffusion current 
between these layers will be

 
(9.38)

Between collisions the average velocity gained from the gravitational field is

 
(9.39)

The above is evidently the osmotic velocity. The total current is

 

 

Writing υ2=kT/m and D=υλ/2 we have

 
(9.40)

and this is just the equation that Einstein assumed.
It is important to emphasise that, at least in this case, the osmotic velocity is produced 

by a field of force. Without such a field there would be no reason for an osmotic velocity.
For the stochastic interpretation of the quantum theory we would like to have a random 

diffusion process whose equilibrium state corresponds to a probability density P=|ψ|2=ρ 
and to a mean current  Such a state is a consistent possibility if ψ=√ρeiS/ħ 
satisfies Schrödinger’s equation because this implies the conservation equation

 

 

In order to have P=|ψ|2 as an equilibrium density under such a random process, we will 
have to assume a suitable osmotic velocity. We do not have to suppose, however, that this 
osmotic velocity is necessarily produced by a force field, similar to that of the gravitational 
field in our example given above, but rather as we have already indicated, it may have quite 
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different causes. (Thus as suggested by Nelson [9], it could be some kind of background 
field that would produce a systematic drift as well as a random component of the motion.) 
At this stage it will be sufficient simply to postulate a field of osmotic velocities, u0(x, t), 
without committing ourselves 

as to what is its origin. We therefore assume an osmotic velocity

 
(9.41)

and a diffusion current

 (9.42)

The total current will be

 
(9.43) 

The conservation equation is then

 
(9.44)

In the above equations there is a systematic velocity

 
(9.45) 

This is made up of two parts, the mean  velocity and the osmotic velocity 
 The mean velocity  may be thought to arise from de Broglie’s guidance 

condition. As we have just explained, the osmotic velocity will arise from some other 
source such as a field, but the main point is that it is derivable from a potential D In ρ where 
ρ is a solution of the conservation equation

 
(9.46)

It follows from equation (9.44) that there is an equilibrium state with P=ρ in which 
the osmotic velocity is balanced by the diffusion current so that the mean velocity is 

 
But now we must raise the crucial question as to whether this equilibrium is stable. In 

other words, will an arbitrary distribution P always approach ρ? Writing P=Fρ we obtain 
the following equation
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(9.47)

We shall show that F must eventually approach 1 everywhere by proving that the maxima 
of F must always decrease and the minima must always increase. Maxima and minima are 
characterised by  At such points we have

 
(9.48)

At a maximum,  is negative and clearly F must be decreasing at this point. At a 
minimum,  is positive and therefore F must be increasing. This can only cease when 
F=1 everywhere.

For times much longer than the relaxation time,  of this process we will therefore quite 
generally encounter the usual quantum mechanical probability distribution. It is implied, 
of course, that at shorter times this need not be so and therefore the possibility of a test to 
distinguish this theory from the quantum theory is in principle opened up. We shall discuss 
the conditions under which such a test may be possible in chapter 14.

The mean velocity is, of course,  As we have seen in connection with 
equation (9.31), this by itself does not determine the acceleration. In addition we need 
a differential equation for S. Then as we have seen in chapter 3 and also earlier in the 
present section, provided ψ satisfies the Schrödinger equation, S will satisfy the extended 
Hamilton-Jacobi equation (3.7) which contains the quantum potential. It is thus clear that 
in the present approach, the quantum potential is actually playing a secondary role and 
this is indeed why it does not have to be included explicitly in the stochastic approach 
(though it provides a very useful insight into the meaning of the process especially in 
the non-stochastic approach). But in all cases the fundamental dynamics depend first of 
all on the guidance condition, and, in a stochastic theory, we bring in also the osmotic 
velocity and the effects of random diffusion. All these work together to keep a particle in 
a region in which P=|ψ|2 is large and where its average velocity fluctuates around  
As explained earlier the quantum potential merely represents the mean self-acceleration 
of the particle under the influence of the de Broglie guidance conditions, and this will be 
valid only if ψ satisfies Schrödinger’s equation. If ψ had satisfied another wave equation, 
the mean accelerations would have been different. In fact we shall extend this theory in 
chapter 12 so that the wave function satisfies the Dirac equation, for which a very different 
mean acceleration is implied.

To bring out the physical significance of the stochastic model, let us consider the two-
slit interference experiment. A particle undergoing random motion will go through one 
slit or the other, but it is affected by the Schrödinger field coming from both slits. In the 
interpretation that we gave earlier, this effect was expressed primarily through the quantum 
potential. In the stochastic interpretation it is primarily expressed through the osmotic 
velocity which reflects the contributions to the wave function ψ coming from both slits. 
Near the zeros of the wave function the osmotic velocity approaches infinity and is directed 
away from the zeros. Thus a particle diffusing randomly and approaching a zero is certain 
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to be turned around before it can reach this zero. This explains why no particle ever reaches 
the points where the wave function is zero. And, as we have indeed already pointed out, 
the osmotic velocity is constantly pushing the particle to the regions of highest |ψ|2 and this 
explains why most particles are found near the maxima of the wave function.

Without assuming an osmotic velocity field of this kind, there would be no way of 
explaining such phenomena. As a result of random motions, for example, a particle just 
undergoing a random process on its own would have no way of ‘knowing’ that it should 
avoid the zeros of the wave function.

To obtain a consistent overall picture we must consider the random background field. 
This is assumed, as we have already pointed out, to be the source of the random motions 
of the particle, but in addition it must determine a condition in space which gives rise 
to the osmotic velocity. Indeed, a single particle in random motion cannot contain any 
information capable of determining, for example, that every time it approaches the zero 
of a wave function it must turn around. This information could be contained only in the 
background field itself. Therefore, the stochastic model does not fulfil the expectations that 
would at first be raised by its name, that is to provide an explanation solely in terms of the 
random movements of a particle without reference to a quantum mechanical field (which 
may be taken as ρ and S or as ψ=√ρeiS/ħ).

In the interpretation that we have been giving throughout this book, this field has the 
property that its effect does not depend on its amplitude. As we have suggested in earlier 
chapters, this behaviour can be understood in terms of the concept of active information, 
i.e. that the movement comes from the particle itself, which is however ‘informed’ or 
‘guided’ by the field. In the stochastic interpretation there is a further effect of the quantum 
field through the osmotic velocity, which is also independent of its amplitude. We can 
therefore say that along with the mean velocity field,  the osmotic velocity field 
constitutes active information which determines the average movement of the particle. 
This latter is however modified by a completely random component due to the fluctuations 
of the background field.

Clearly then, there are basic similarities between our original essentially causal 
interpretation and the stochastic interpretation. Nevertheless, there are also evidently 
important differences. One of the key differences can be seen by considering a stationary 
state with S=const., e.g. an s-state. In the stochastic model the particle is executing a random 
motion which would bring about diffusion in space, but the osmotic velocity is constantly 
drawing it back so that we obtain the usual spherical distribution as an average. But now 
the basic process is one of dynamic equilibrium. The average velocity, which is zero, is the 
same as the actual velocity in the causal interpretation. Such a view of the s-state as one 
of dynamic equilibrium seems to fit in with our physical intuition better than one in which 
the particle is at rest.

9.7 Stochastic treatment of the many-body system

The extension of this model to the many-particle system is straightforward. The wave 
function, ψ(xir), which is defined in a 3N-dimensional configuration space, satisfies the 
many-body Schrödinger equation. We assume that the mean velocity of the nth particle is
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(9.49)

In addition we assume an arbitrary probability density P(xir) and a random diffusion current 
of the nth particle

 
(9.50)

We then make the further key assumption that the osmotic velocity component of the nth 
particle is

 
(9.51)

where ρ=|ψ|2.

From here on the theory will go through as in the one-particle case and it will follow that 
the limiting distribution will be P=|ψ|2.

Equation (9.50) describes a stochastic process in which the different particles undergo 
statistically independent random fluctuations. However, in equation (9.51) we have 
introduced an important connection between the osmotic velocities of different particles. 
For the general wave function that does not split into independent factors, the osmotic 
velocities of different particles will be related and this relationship may be quite strong 
even though the particles are distant from each other. For this model requires an effectively 
instantaneous nonlocal connection which brings about the related osmotic velocities of 
distant particles (according to   

It is clear then that the stochastic approach brings in yet another kind of nonlocality over 
and above that which is present in the causal interpretation (in which, as we have seen in 
chapters 3 and 4, the acceleration is given by  and Q is the generally 
nonlocal quantum potential). However, by its very name, the stochastic approach seems 
to imply a theory in which quantum mechanics could be explained in terms of particles 
undergoing random processes and thus one could easily be led to expect that at least in this 
theory there would be no need for nonlocality. For example, Nelson [9], who has worked 
intensively on this sort of interpretation, has written “But the whole point (of the stochastic 
theory) was to construct a physically realistic picture of microprocesses, and a theory that 
violates locality is untenable” [10]. From this it is clear that Nelson expected the stochastic 
theory to be local even though he finally came to the conclusion, in agreement with us, that 
it has to be nonlocal.

To bring out the full meaning of this nonlocality it is useful to discuss the Einstein-
Podolsky-Rosen experiment in terms of the stochastic interpretation. To do this we first 
recall that, as shown in chapter 7, the essential feature of a measurement process is that the 
particles constituting the measuring apparatus can be shown to enter a definite channel, and 
that after this they cannot leave the channel in question because the wave function is zero 
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between the channels. From this point on the wave function of the whole system effectively 
reduces to a product of the wave function of the apparatus and of the observed system. It 
was demonstrated that thereafter, the remaining empty channels will not be effective. It 
follows that the net result is the same as if there had been a collapse of the wave function 
to a state corresponding to the result of the actual measurement.

It is clear that a similar result will follow for the stochastic interpretation because here 
too there is no probability that a particle can enter the region between the channels in which 
the wave function is zero.

Let us now consider the EPR experiment in the stochastic interpretation. We recall that 
in this experiment we have to deal with an initial state of a pair of particles in which the 
wave function is not factorisable. A measurement is then made determining the state of 
one of these particles, and it is inferred from the quantum mechanics that the other will 
go into a corresponding state even though the Hamiltonian contains no interaction terms 
that could account for this. In the causal interpretation the behaviour of the second particle 
was explained by the nonlocal features of the quantum potential which could provide for a 
direct interaction between the two different particles that does not necessarily fall off with 
their separation and that can be effective even when there are no interaction terms in the 
Hamiltonian.

As we have seen in connection with equation (9.31), in the stochastic interpretation 
all the above nonlocal effects of the quantum potential are still implied, but now we have 
seen that there is also a further nonlocal connection through the osmotic velocities. And 
when the properties of the first particle are measured the osmotic velocities of both will be 
instantaneously affected in such a way as to help bring about the appropriate correlations 
of the results.

It is clear that the stochastic interpretation and the causal interpretation treat the nonlocal 
EPR correlations in a basically similar way. The essential point is that in an independent 
disturbance of one of the particles, the fields acting on the other particle (osmotic velocities 
and quantum potential) respond instantaneously even when the particles are far apart. It is 
as if the two particles were in instantaneous two-way communication exchanging active 
information that enables each particle to ‘know’ what has happened to the other and to 
respond accordingly.

Of course, in a non-relativistic theory it is consistent to assume such instantaneous 
connections. We shall, however, show later how these considerations can be extended to 
take into account the fact that the theory of relativity has been found to be valid in a very 
broad context.
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 Chapter 10  
The ontological interpretation of the Pauli  equation

10.1 Introduction

We have thus far developed a systematic ontological interpretation of non-relativistic 
Schrödinger theory for particles. In this and the next two chapters of the book, we shall be 
concerned principally with extensions of the theory to include

●  the non-relativistic Pauli equation
●  field theories considered non-relativistically
●  relativistic treatment of both particle and field theories.

We begin this chapter with a treatment of the non-relativistic Pauli equation. Firstly, we shall 
discuss some previous suggestions for an onto-logical interpretation of this equation based 
on the idea that the particle is an extended rigid object which makes a ‘spin’ contribution 
to the total angular momentum [1, 2]. We then give reasons showing why this assumption 
does not give rise to a satisfactory theory. We are led instead to regard the Pauli equation as 
a non-relativistic limit of the Dirac equation. When we do this we can see that, in addition to 
the straightforward contribution to the current implied by the previous models (cf. equation 
5.4), there is a further circulating current in which the orbit precesses in a way that depends 
on the wave function. This makes a contribution to the total angular momentum which 
accounts for that which has usually been attributed to the particle’s spin. This means that 
the spin angular momentum does not arise from an ex tended particle structure at all, but 
that rather it is a further and more subtle feature of the orbital motion of the particle. 

It is thus implied that the spin is a context-dependent property of the particle, rather than 
an intrinsic property. As such it is, as we shall see, readily related to a model originally 
proposed by Bell [3].

We develop our model and exhibit its consequences for a variety of typical situations. 
We then extend it to a many-body system to provide an explanation of the EPR experiment 
with two atoms of spin one-half constituting a molecule of total spin zero (thus extending 
the results of chapter 7 for particles of spin one).

10.2 The Bohm, Schiller and Tiomno model

We now give a sketch of the original Bohm, Schiller and Tiomno model, [BST], for spin 
[1]. We shall give some reasons why we regard this model as ultimately inadequate, but it 
is nevertheless useful to consider it here as it will help make clear the model that we are 
actually going to adopt.
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We begin with the Pauli spinor

 

 

which satisfies the Pauli equation

 
(10.1)

where σ are the Pauli spin matrices, A the vector potential and B the applied magnetic field. 
(We shall put ħ=c=1 throughout this chapter.)

To develop this interpretation, we start with the special case where A=0 and B=0. In 
this case the Pauli equation reduces to two uncoupled Schrödinger equations. (It is readily 
seen that when B≠0, the equations will generally be coupled.) Then setting ψj=Rjexp[iSj] 
we obtain

 
(10.2)

and

 
(10.3)

We can picture the meaning of the above therefore as two independent probability 
distributions, each of which is conserved and in which the velocities of the particle are, 
in general, different. When B≠0, neither of these probability distributions is conserved by 
itself because the two wave functions are coupled. However, it is easily shown that their 
sum

 (10.4)

is conserved.
We may then define a mean velocity

 
(10.5)

where P1=|ψ1|
2 and P2=|ψ2|

2. The conservation equation is then

 
(10.6)
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On this basis we can say that the first step in obtaining an ontological interpretation is to 
assume a particle following a definite trajectory with the guidance condition (10.5) 
(which is clearly a generalisation of the guidance condition for a particle without spin). 
The probability distribution of such particles will be assumed to be P= ρ. (By a 
generalisation of the argument used with Schrödinger’s equation, it is clear that one can 
show that if there are chaotic processes in the motion of the particle, then, if P is not 
initially equal to ρ, it will approach ρ in the long run (see chapter 9).)

Thus far we have not provided enough physical concepts to give a meaning to the Ri 
and Si, which constitute four quantities. The simplest physical idea would be to assume 
(as was indeed done in the original paper of BST [1]) that the particle is a spinning object 
whose orientation is specified by the three Euler angles  It is well known that a two 
component spinor can be put into correspondence with these angles. Indeed we can write

 
(10.7) 

Assuming that the object is spherical, we may propose that θ and  represent the orienta-
tion of the angular momentum vector, while χ represents the angle of rotation of the object 
about this axis. If the angular momentum is one half, we can write the spin-vector as

 
(10.8)

This spin-vector is then easily shown to be in the direction determined by θ and  It is 
clear that

 
(10.9)

The spinor is now fully interpreted. We are evidently regarding the Hamilton-Jacobi phase, 
S, as being equal to the angle of rotation of the rigid body around an axis in the direction 
of the spin.

We can obtain an interesting physical picture here. If we add to the energy of the particle 
the rest energy m0c

2, Schrödinger’s equation (in this non-relativistic treatment) can be 
written as

 
(10.10)

With B=0 and V=0, a particle with zero momentum will have the wave function

 
(10.11)

The ontological interpretation of the Pauli equation 
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Thus the angular frequency is

  

which is the frequency corresponding to the Compton wavelength. When k is not zero, we get

 
(10.12)

This implies a motion in which, while x is increasing with time, the particle is simultaneously 
rotating around the axis determined by the spin direction. For example, in the case in which 
the spin is directed along the line of velocity, an element in the spherical structure of the 
particle executes a helical motion with the screw sense determined by the spin direction. 
(In general the motion is, of course, more complicated.)

There will be a generalisation of the Hamilton-Jacobi equation for S= χ. To obtain this 
we first transform the velocity (10.5) with the aid of (10.7), and we find that

 
(10.13)

It can then be shown (see BST p.63) that S satisfies the equation 

 

(10.14)

In the above we have a generalisation of the quantum potential which is given by

 
(10.15) 

In addition, the orbital motion depends on the angles θ and  which determine the spin-
vector S. This is a quantum mechanical spin-orbit coupling. Evidently it is also necessary 
that θ and  depend on the orbital motion. What happens is that the spin-orbit coupling 
brings about a quantum torque acting on the spin-vector (we shall not go into details here, 
but the relevant equations are given in BST p.64).

We can illustrate the meaning of these equations in terms of a measurement process 
in which we begin with a spin pointing in an arbitrary direction and measure it in the 
z-direction. As the wave packets corresponding to positive and negative spins respectively 
begin to separate in the z-direction, it is found, first of all, that the quantum torque 
eventually lines the particle spin up with the corresponding wave packet into which the 
particle ultimately goes. Where the particle will go depends not only on its initial position, 



175

but also on the initial values of θ and  However, with the probability distribution that has 
been assumed, it is easily shown that the probability that the particle will end up in a given 
final packet, ψf(x), is ∫|ψf(x)|2 dx. And this, of course, will be the same as one obtains in the 
usual interpretations.

The relevant orbits have been worked out for two cases (see Dewdney et al. [4]). In 
both, one assumes the mass, m, of the particle is so great that we can neglect the spread 
of the wave packets. In Case 1, the spin points initially in the x-direction. The trajectories 
are shown in figure 10.1, while the turning of the spin directions are shown in figure 10.2. 
For Case 2, similar results are given for a certain initial spin direction that yields a 75% 
probability for spin-up in the z-direction and a 25% probability for spin-down. These 
trajectories are shown in figure 10.3, while the spin directions are shown in figure 10.4.

10.3 The many-body Pauli equation

As shown in BST [1, 2], the model described here works consistently and provides an 
adequate ontological interpretation of the Pauli equation for a one-body system. However, 
this model gets into very serious difficulties when we try to extend it to a many-body 
system. To show what these difficulties are, let us begin by considering the general wave 
function for such a system,  This has 2N complex components (or 
2N+1 real components). 

Figure 10.1: Trajectories during spin measurement with  

The ontological interpretation of the Pauli equation 
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Figure 10.2: Field of orientations θ(z, t) associated with figure 10.1

 

Figure 10.3: The trajectories for a Gaussian distribution of initial positions in the 
region of wave packet separation during a spin measurement with  and 
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Figure 10.4: The field of orientations θ(z, t) associated with figure 10.3

The many-body Pauli equation is then (assuming B=0)

 
(10.16)

From this we obtain the net probability density in the configuration space of all the 
 particles

 
(10.17)

(See section 10.4 for a more detailed discussion of the many-body wave function.) 
Let us then define the current density in configuration space as

 
(10.18)

It then follows from the Pauli equation that

 
(10.19)
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The above expresses the conservation of probability in configuration space. In analogy 
with what was done in the many-body Schrödinger equation, this suggests that we define 
the particle velocity as

 
(10.20)

The above can be regarded as a generalisation of the guidance condition, while the con-
servation equation (10.19) implies that particles guided in this way will have a conserved 
probability density. But to complete the interpretation, we need to define the spin-vectors. 
In agreement with what was done with the velocities, the spin of the nth particle, Sn, has to 
be defined as

 
(10.21)

where an represents the spin matrix of the nth particle, and 1n′ represents the unit matrix on 
the spin indices of all the other particles. This will define at most 3N functions. We have 
also the definition of the velocities υn, which will add up to give at most 6N functions 
(though not all of these may be independent). These are all the properties belonging to the 
individual particles alone that our spin model can allow for. However, as we have already 
pointed out, the wave function contains, in general, 2N+1 independent real parameters. Thus 
for the 2-body system there are 8 independent parameters. But there are 6 spin vectors and 
6 velocity components. Therefore it should be possible to give a physical meaning to all the 
parts of the wave function for this case (in which, of course, not all the physical quantities 
need be independent). Dewdney et al. [5] have, in fact, considered this case and have given 
some detailed results.

It is clear however that as we increase N indefinitely, the number of physical properties 
of the individual particles will only increase as N, while the number of independent param-
eters of the wave function will increase as 2N+1. Therefore there is no way to give a physical 
meaning to all the parameters along these lines. One might consider properties belonging 
to sets of 2, 3 or 4 particles etc., but it is difficult to see what this could mean physically. 
Such properties would be nonlocal and might be significant even when the particles are far 
apart. In any case, the simple model of a set of spinning particles would no longer apply.

The above difficulty makes it doubtful that a consistent interpretation of the many-body 
Pauli equation can be obtained in terms of a model of spinning particles. But there is a fur-
ther difficulty even with the one-body Pauli equation, when we consider the fact that this 
must be the non-relativistic limit of a relativistic theory, i.e. the theory of the Dirac equa-
tion. The fact is that we cannot account properly for the value of the angular momentum 
for a model of this sort. Using the relation for the frequency of rotation of a particle that we 
obtained earlier, we can easily see that to have a spin one-half, we would need an electron 
of the size of the Compton wavelength. But we know that this cannot be allowed because 
of the experimental data on scattering. In fact this data implies that the electron cannot be 
larger than about 10−16 cm. To obtain the angular momentum, ħ/2, a spinning particle of this 
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size would have to have a peripheral velocity very much greater than that of light. Since we 
have to regard the Pauli equation as the non-relativistic limit of the Dirac equation, which 
is fully relativistic, we cannot allow such velocities.

For these two reasons we conclude that this model of a spinning particle will not be an 
adequate one.

10.4 The Pauli equation as the non-relativistic limit of the Dirac equation

We can obtain some further insight into what would be a proper model for the Pauli equation 
by considering in some detail how it comes out as the non-relativistic limit of the Dirac 
equation. We begin with the Dirac spinor 

Ψ=Ψa where a=1, 2, 3, 4. The Dirac equation is

 
(10.22)

where α, β are the Dirac matrices. 
We choose a representation in which β is diagonal and write

 

 

where ψ1 and ψ2 are two-component spinors corresponding respectively to β=+1 and β=−1. 
The Dirac equation becomes

 

(10.23)

where σ are the Pauli matrices. 
For low velocities and positive energies,  With  
we obtain

 (10.24)

Putting equation (10.24) into (10.23a) we find

 
(10.25)
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This becomes

 
(10.26)

Writing E=m+ΔE and using

 
(10.27)

we obtain

 
(10.28)

This is clearly the Pauli equation with a constant rest mass term added. 
To give an ontological interpretation of the Pauli equation considered as a non-relativ-

istic limit of the Dirac equation, we begin with the Dirac current

j=ψ†αψ (10.29)

which satisfies the conservation equation

 
(10.30)

As we have been doing in previous cases, we take advantage of the fact that when a con-
servation equation is satisfied, we can always assume a particle with a velocity satisfying 
our now generalised guidance condition

 
(10.31)

which has a probability distribution given by P=ρ. To do this it is, of course, necessary 
that ρ be positive definite. But P=|ψ|2 is clearly positive definite. (Alternative definitions 
of the current density which do not, in general, lead to positive definite probabilities have 
been considered by de Broglie [6]. But evidently we cannot obtain a consistent ontological 
interpretation if we admit negative probability densities for the particles.)

To simplify the subsequent discussion, we shall from now on restrict ourselves to a free 
particle. From equations (10.24) and (10.27) we then obtain
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(10.32)

(also assuming energies low enough so the ΔE/m can be neglected). We then obtain

 
(10.33)

which reduces to the sum of two terms, jA+jB, where

 
(10.34)

 
(10.35)

and
The velocity correspondingly reduces to the sum of two parts υ=υA+υB where

 
(10.36)

 
(10.37)

The first part of the current, jA, is the same as it was in the BST interpretation of the Pauli 
equation (and υA gives the same velocity as in this interpretation). The second part, jB,
satisfies the identity  and this evidently corresponds to some kind of additional 
circulation. To see what this means consider the case in which ψ is a spherical wave packet 
of radius a, centred at the origin and falling off rapidly at distances of the order r=a. The 
term

 
(10.38)

represents a velocity in the direction  (where s=ψ†σψ). This implies a circular move-
ment around the direction of ‘spin’ which has a maximum velocity near r=a.

This additional velocity, υB, gives rise to a further contribution to the mean magnetic 
moment over and above that coming from the orbital motion. Indeed the average of the 
total magnetic moment, , is

 
(10.39)
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The first term in the above is just

 
(10.40)

We can write this as

 
(10.41)

The above is just the orbital momentum of the current. The second term is

 

(10.42)

We can readily transform this into 

 
(10.43)

This is the average magnetic moment due to the circulating motion, which evidently comes 
out equal to the average obtained in the usual interpretation.

We see then that, in the Dirac theory, the magnetic moment usually attributed to the 
‘spin’ can actually be attributed to a circulating movement of a point particle, and not 
that of an extended spinning object. The total value is, however, independent of the size 
of the wave packet because, although the velocity of circulation goes down by a factor 
1/a for large wave packets, the moment of momentum contains a further factor r which 
compensates for this.

This implies that the magnetic moment is not an intrinsic localised property of an 
extended particle structure at all. Rather it comes about as a result of the general motion 
of the particle through space as determined by the Dirac guidance condition (10.31). This 
means that the magnetic moment, like so many quantum properties that we have discussed 
in earlier chapters, is a context dependent property of a point particle. This property depends 
on the quantum field, i.e. the Dirac spinor, Ψa, and therefore ultimately it has to be regarded 
as a potentiality that depends on the context of the overall environment in a way that we 
have discussed in chapter 4.

In the usual approach, the magnetic moment is regarded as the product of spin and 
therefore it is implied that whatever movement produces the magnetic moment should also 
be responsible for what is generally called the spin angular momentum.

It seems natural to suggest, therefore, that there is some relationship between the 
circulatory motion that we have described above and what has commonly been called 
the spin angular momentum. In seeking this relationship, it is crucial to note that, for the 
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Dirac particle, the velocity and the momentum are not in the same direction. Indeed the 
momentum of the particle follows from equation (10.34)

 

 

from which we can express the velocity as

 
(10.44)

The orbital angular momentum is 

L
0
=r×p. (10.45)

In an isolated system one expects the total angular momentum to be a constant. But if we 
compute  we obtain

 

(10.46)

where F is the applied force and T is the applied torque. Moreover even if T=0 we will still 
not have conservation of the orbital angular momentum for the case of a Dirac particle.

In the usual interpretation a similar question arises. Thus the orbital angular momentum 
operator L=r×p is not conserved even for a free particle because  This fact implies that 
there is an additional ‘intrinsic’ angular momentum operator s and, as is well known, if we 
choose s=σ/2 we obtain  so that J=L+σ is conserved.

Returning to our model we want to show that what has been usually called spin angular 
momentum can be attributed consistently to the circulatory motion that comes out of the 
non-relativistic limit of the Dirac equation. What is usually called the mean spin angular 
momentum density is just

 
(10.47)

Let us now consider the quantity

 (10.48)

which has the dimensions of an angular momentum density. Using three index tensors with 
indices i, j etc., we can readily show that

The ontological interpretation of the Pauli equation 



184 The undivided universe

 
(10.49)

so that we obtain for what is usually called intrinsic angular momentum density

 
(10.50)

We see then that sj differs from  only by a perfect divergence. Therefore it is clear 
that their averages will be the same (because the integral of a divergence is zero), but in 
addition,  will also be conserved. To see that this is so we note that replacing sj by  
merely adds a term to Jj which is equal to 

 
(a)                (10.50)

If  is the tensor current density for the total angular momentum density Jj, the conservation 
equation for the latter can be written as

 

 

Adding (10.50a) to  leads to

 

 

It is then clear that the total angular momentum will be conserved if the angular momentum 
density of circulatory motion as defined through  undergoes detailed conservation. 
Therefore  is just as good a candidate for the ‘intrinsic’ angular momentum density 
as sj.

If we accept  as the intrinsic angular momentum density, we obtain for the total 
angular momentum

 (10.51)

In this way we are able to account, for the intrinsic angular momentum as produced by the 
circulatory motion. Note however that this angular momentum is only half that which we 
might have expected at first sight from our expression for the magnetic moment (10.43). The 
reason is basically that when υB is not in the direction of the momentum, there are intrinsic 
torques. These reduce the contribution of this motion to the total angular momentum below 
that which one might have expected from our general intuition (this latter, of course, does 
not include such cases in which the velocity and the momentum are not parallel).
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It follows then, that like the magnetic moment, the spin is also a context dependent 
property of the particle rather than an intrinsic property. It might be better to call it a result 
of the context dependent circulatory motion of the trajectories which is over and above that 
which determines the usual orbital angular momentum.

To sum up then, the interpretation that flows out of our discussion is that the electron 
must still be regarded as a simple point particle whose only intrinsic property is its position. 
The particle has a velocity which is determined by the guidance condition (10.29). In the 
non-relativistic approximation, this includes that assumed in the BST model, along with 
an additional circulatory contribution  In this approximation the probability density is 
P=ρ=|Ψ1|

2.
This model is very close to the one that was first proposed by Bell [3] who likewise 

assumed a point particle, but who assumed that the mean velocity is the same as that of the 
BST model, where

 

 

The Bell model differs from the one that we have just developed, because it does not 
include the circulatory motion corresponding to the magnetic moment and the spin angular 
momentum. But since  both models will give the same probability density. 
Therefore as long as we are only interested in probability densities, the circulating spin-
current can be neglected, and we can use Bell’s model instead.

In the models that have just been described above, we restrict ourselves to determining the 
motion of a particle through suitable guidance conditions, and we do not attempt to account 
in detail for the accelerations through something like a quantum potential or some form of 
spin-orbit interaction. To do this latter will give insight only if the acceleration can be given 
as some simple function of the relevant physical variables. For example, in the original 
causal interpretation, we find that the acceleration is determined by  The 
first of these terms represents the part of the acceleration that can be accounted for in terms 
of classical forces that are generally local and that produce an effect that is proportional to 
the intensity of the field. The term  represents the quantum mechanical contribution 
that depends on the form of the field and not on the intensity, and that acts in a way that is 
generally nonlocal.

In the BST model for the one-particle system there were additional quantum mechanical 
terms corresponding to explicit expressions for the spin-orbit coupling. But in the many-
particle system, we could not find any acceptable physical interpretation for the vast number 
of terms that entered into the determination of the acceleration. In addition we found that 
we could not consistently attribute the spin angular momentum to an extended particle. We 
have therefore reached a point where the attempt to account for the acceleration in terms 
of various forces no longer provides any useful insight. Nevertheless the theory still works 
consistently as long as we have a suitable guidance condition.

Given that there is no extended particle that is spinning and that what we call spin 
represents only some average property of the circulating orbital motion, how do we 
understand what we usually call a measurement of the spin, for example, in a Stern-Gerlach 
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experiment? To discuss this, we may conveniently consider a neutral hydrogen atom with 
one orbital electron in an s-state. From equation (10.28) we can see that the operator for 
the interaction energy of the electron ‘spin’ with the magnetic field is (e/2m)σ.B. (We 
neglect nuclear spin here.) If B is inhomogeneous, that is B=B(z), it is readily shown [7] 
that this will cause the initial wave packet to break into two parts that move in opposite 
directions along the axis determined by B(0). For example, suppose the initial ‘spin’ was in 
the x-direction, so that the spin-current was circulating around the x-axis. After interaction 
with the inhomogeneous magnetic field in the z-direction, two packets begin to separate 
in this direction and eventually cease to overlap. Clearly the particle must end up in one 
of these packets. The results in each individual case depend, of course, on the precise 
initial conditions. The probability for each possible result will come out as one-half, given 
our assumptions about the probability distribution of the initial conditions. If the result 
corresponds to spin ħ/2, the current will circulate around the positive direction, while if 
the result is −ħ/2, the circulation is opposite. In this way we understand what happens in a 
so-called spin measurement as an essentially participatory process. In this process the net 
properties of the orbital motion are transformed through this participation in a way that 
depends on the precise initial conditions as well as on the ‘environment’ supplied by the 
measuring apparatus. The value that is attributed to the ‘spin’ as a result of a measurement 
process is thus a potentiality whose realisation depends on these conditions and on the 
general environment, including the measuring apparatus.

10.5 Extension to the many-body system

We shall now extend this model to a system of many particles. In doing so we shall prove 
that the non-relativistic limit of the many-body Dirac equation implies that the current for 
each particle is just the one that we obtain for the many-body Pauli equation given in sec-
tion 10.3, together with a circulating spin current for each particle. This latter is basically 
just an extension of the spin current obtained in the one-particle system.

We begin by defining the Dirac wave function for a system of many particles. The treat-
ment is very similar to that of the many-body Pauli equation. The total wave function can 
be written as

 (10.52)

where each index ai runs from 1 to 4. (We are not for the moment interested in the question 
of Lorentz invariance, which we shall discuss in a later chapter.) The Dirac equation for 
this system is then

 
(10.53)

αn represents the velocity operator for the nth particle. Its matrix elements operate only on 
the spinor index an. Similarly for βn. The αn have the 

anticommutation relations
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 (a)            (10.54)

and the commutation relations

 
(b)           (10.54)

That is to say, the α belonging to one particle commute with those belonging to the others. 
Similarly

[βn, βn′]−=0 (c)        (10.54)
[βn, αn]+=0. (d)        (10.54)

and
Let us now adopt the representation in which all the βn are diagonal, so that the one-

particle wave functions take the form

 

 

where ψ1n and ψ2n are two-component spinors whose indices have been suppressed and 
where  refers to the large component and  refers to the small component. The 
N-body wave function can then be written as

 
 

The Dirac equation will now have 2N explicit indices representing the large and small com-
ponents for each particle respectively. The Dirac equation can then be written as 

 

(10.55)

 

(10.56)

We now write  and assume that all the particles have positive energies. The 
Pauli wave function will then be approximately  The total energy will be approximately 
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E=∑n mn, in this non-relativistic approximation in which V is assumed to be small compared 
to ∑n mn.

For each particle, n, we can solve for  in terms of  Neglecting V 
for the reasons we have given, we find

 
(10.57)

If we substitute this into (10.38) it is readily verified that we obtain the Pauli many-body 
equation. However, what we are especially interested in here is the current of the nth par-
ticle which is

 

(10.58)

Let us now use (10.57) in (10.58). We find that (assuming all the particles have the same 
mass)

 

(10.59)

This reduces to

 

(10.60)

As we have suggested before, we can simplify by assuming all the  are 1, corresponding 
to positive energies for each particle. The remaining wave function is then just the Pauli 
many-body wave function Ψ. We then get 
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(10.61)

From this we conclude that the model (10.61) for the N-body system can be obtained by 
regarding each particle as having two parts to its velocity

 
(10.62)

and

 
(10.63) 

Therefore our original picture which adds a circulating current to the velocity of each par-
ticle still holds for the many-body system.

We have of course been assuming the interactions are weak enough, so that all the 
particles will be within the non-relativistic limit. In this approximation the details of the 
interaction will not significantly change this picture.

10.6 The EPR experiment for two particles of spin one-half

We shall now go on to discuss the EPR experiment for two particles of spin one-half. We 
shall find that we obtain a consistent interpretation that is in fact very similar to the one 
that we gave for the case of two particles of spin-one forming a molecule of total spin-zero 
(chapter 7).

We begin by denoting the coordinates of our two particles by x1 and x2. For the sake 
of simplicity, we suppose that the two particles are not equivalent. We further assume 
that each particle is fairly well localised with respective wave packets f(x1) and g(x2), the 
centres of which are separated by a distance a that is much greater than the width of either 
of the packets. We also suppose that these packets represent s-states about their respective 
centres.

The wave function for a system with total ‘intrinsic’ angular momentum zero will be

 
(10.64)
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where 

 

(10.65)

ψij expresses the fact that the wave function is antisymmetric in the spinor indices of the 
two particles. For the wave functions that we have assumed, the particles will have no 
orbital angular momentum. The intrinsic angular momentum of the first particle is

 
(a)       (10.66)

and for the second particle it is

 
(b)       (10.66)

Clearly the values of Σ1 and Σ2 are determined by s1 and s2. We readily obtain

 
(a)     (10.67)

and likewise

s2=0. (b)   (10.67)

This means that in the initial state, there is no circulating current corresponding to intrinsic 
moments. We shall discuss the further significance of this in more detail presently. But we 
may note here that this result is very similar to that obtained for the orbital angular momenta 
of two atoms of spin-one combined to make a molecule of spin-zero where similarly we 
found that the particles were not moving.

Let us now suppose that particle number 1 is subjected to a Stern-Gerlach experiment 
so that its wave function divides into two parts, one moving upwards along the z-axis by 
a distance d, and the other moving downwards by this distance (we assume also that d is 
much greater than the width of the wave packets). The wave function then becomes

 
(10.68)
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If particle number 1 enters the packet going upwards, particle number 1 actually is set in 
circulatory motion in the positive direction around the z-axis, while particle number 2 is 
likewise set in motion in the opposite direction. And if particle number 1 enters the packet 
going downwards, the results for both particles will be opposite.

It is clear then that we have explained the correlations in the results of the EPR 
experiment, not only for the case of the spin measured in the z-direction, but also in an 
arbitrary direction. This is because the wave function ψij is a scalar for rotations, so that the 
same analysis can be carried out for a Stern-Gerlach experiment performed in an arbitrary 
 direction.

 
Figure 10.5: Trajectories and correlated spin vector orientations for two particles initially in 
a singlet state after the impulsive measurement of the z′-component of the spin of particle 
1 only

At first sight it may seem very strange to say that the particles had initially no circulatory 
motion corresponding to intrinsic angular momentum. But (as also happened for the case 
of two particles of spin-one) the intrinsic angular momentum of a given particle is seen to 
be very much a contextual potentiality, not only with regard to its direction, but also with 
regard to its absolute value. This is affected not only by the environment supplied by the 
measuring apparatus, but also by the presence of other particles and by the wave function 
of the combined system. Indeed a little reflection shows that the only possible way to have 
a completely isotropic state corresponding to a molecule of total intrinsic angular momen-
tum zero is to have zero intrinsic angular momentum for each particle. (The Pauli exclusion 
principle is, however, still maintained for equivalent particles because for these the total 
wave function is antisymmetric.)

The ontological interpretation of the Pauli equation 
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The way in which the intrinsic angular momentum develops for each particle can be 
followed in detail using the appropriate guidance conditions. Dewdney et al. [5] have done 
this for the EPR experiment for the BST model. However, their results for s1 and s2 will 
still be relevant to our model. Although their velocities differ from ours in that they do not 
contain the circulatory motion, this difference does not alter the probability distributions 
(as we have pointed out in section 10.4). These results are given in figure 10.5 in which it is 
clearly seen that s1 and s2 gradually increase from zero to their final values in each case.
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 Chapter 11  
The ontological interpretation of boson fields

11.1 Introduction

We are now ready to extend our ontological interpretation to the boson field which in this 
chapter we consider only from a non-relativistic stand-point. The question of relativistic 
invariance will be discussed in the next chapter.

We shall begin by giving reasons why it is necessary in doing this to give up the notion of 
particle as fundamental and to regard our basic ‘beables’ as the field variables themselves. 
To understand what this means, we could approximate a continuous field by a very dense 
distribution of field points,  where n is the nth point. The beables will then be the fields 
at the points in question (e.g. in the case of a scalar field  These are represented by a 
point in the configuration space  of all the field beables (which, in the limiting 
case of continuity, approaches a non-denumerably infinite number of dimensions). This is 
analogous to a system of infinitely many particles, but the coordinates  of the particles 
now correspond to the values of the field  at the specified points at which the field has 
been assumed to exist. The trajectory of a whole set of particles in their configuration space 
is then replaced by the trajectory of the whole set of field beables in their configuration 
space. This means that the concept of particles does not correspond to a basic beable in our 
interpretation.

How then do we understand the particle-like properties of the bosonic field, e.g. photons 
or bosons with mass? In this chapter we develop an ontological interpretation which shows 
systematically how this comes about.

To do this we shall first analyse the field into normal modes and discuss their meaning 
for excited states of the field, including both Fock states and coherent states. We then 
discuss the absorption of a quantum of energy by an atom. In this process the field is 
initially distributed throughout a wide region of space. However, the equations for the field 
beables are not linear and local wave equations, such as for example, the d’Alembert and 
Klein-Gordon equations. Rather they contain an extension of the quantum potential, which 
we call the super-quantum potential of the total field. This is both nonlinear and nonlocal. 
Because of this nonlinearity and nonlocality, energy is ‘swept in’ from the entire wave 
packet so that it concentrates on the atom as a single quantum of energy hv. When and 
whether this will happen depends on the detailed initial conditions of the total set of field 
beables. But statistically, the probability will be the same as in the usual interpretation. If 
there are several atoms, these initial conditions will determine which of them will absorb the 
full quantum of energy. In this way we are able to answer the criticism raised by Renninger 
[1], who considered a spherical wave and asked how only one atom out of all the atoms 
on the wave surface comes to be excited. We thus show that while the field beables are 
distributed throughout space, they generally manifest themselves in a discrete particle-like 
way (e.g. as if the field were composed of photons or massive bosons).
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This explains the wave-particle duality. For it is a wave-like distribution of field beables 
that determine the discrete particle-like manifestations. This is one of the major differences 
between our ontological model of particle beables and that of field beables. In the case 
of the latter there are no particle beables but only dynamic states of the whole set of field 
beables which suggest certain particle-like features in the overall behaviour.

As an important illustrative example, we consider the photon-like behaviour in a gas 
arising when a quantum of energy is scattered by the atoms of this gas. Each scattering 
process gives rise to a subsequent quantum which then goes on to build up a cascade 
of ionised atoms that constitute what is usually called the ‘track of the photon’. In our 
approach the scattering process is described by the absorption of a full quantum of energy 
from the overall field in a way that we have already outlined, followed by re-radiation of 
a quantum of a lower energy. This is then absorbed and re-emitted by a succeeding atom 
and so on. The typical scattering angle in the Compton effect is of the order of λ/λc where 
λ is the wavelength of the quantum and λc is the Compton wavelength of the atom. For 
high energy quanta, this will be small. Therefore successive collisions will be distributed 
approximately along a straight line with small random variations. The whole process takes 
place in a definite time sequence as if a bullet-like object has struck the atoms in a series 
of collisions leaving ionised particles in its wake. Yet in our interpretation there is no such 
object.

In this connection we emphasise that photons have never been observed directly but 
only through the manifestations in particulate matter that are attributed to them. Since our 
approach explains all these manifestations, we have no need of the further assumption of a 
bullet-like photon to account for what is actually observed. 

In the classical limit, the super-quantum potential becomes negligible in a way similar 
to that which we have already discussed for the quantum potential in chapter 8. The beables 
then obey simple linear equations, e.g. the d’Alembert or Klein-Gordon equation. Their 
Fourier coefficients correspond to simple harmonic oscillators which can, for example, 
be treated in terms of coherent states that have an essentially classical behaviour of the 
beables for high quantum numbers.

The above makes it clear that in the classical limit, a bosonic system does not produce 
significant particle-like manifestations. The nearest we can come to a particle in the classical 
limit is to make a wave packet in the field beables. In so far as the spread of this packet can 
be neglected, there is a localised pulse of energy which follows a particle-like path (see, 
for example, Mandel [2]). But in the classical limit, the restriction to transferring discrete 
quantities of energy to particulate matter plays no significant role. For the representation 
of the behaviour of the field as continuous provides a very good approximation to what 
actually happens.

After thus bringing out the basic concept needed for our ontological interpretation of 
quantum field theory, we shall extend this interpretation to explain interference phenomena 
and the Pfleegor-Mandel [3] experiment involving the interference of two separated low-
intensity lasers. Finally we treat the EPR experiment along with the Compton effect.
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11.2 Reasons for starting with quantum field theories for bosonic fields

In developing an ontological interpretation of bosonic field theories, we have, a priori, to 
consider two possibilities. Firstly we could try to interpret such theories by assuming a set 
of bosonic particles that would be ‘guided’ by a quantum field based on a wave function 
of the whole system of particles. If we could do this, the quantum field theory would 
not require a treatment basically different from that which we have already given for the 
many-body system. In the case of the electromagnetic field, for example, such particles 
would represent photons, while for meson fields of various kinds they would represent the 
corresponding massive bosons.

But secondly, we could start as we have indeed already suggested in the introduction, 
by regarding the field quantities themselves as the basic beables. The wave functional of 
all these beables would then imply new quantum properties for the fields, and the particle-
like manifestations would be explained along the lines discussed in the introduction, as 
dynamic properties of the whole set of field variables.

In this section we shall sketch the principal reasons why the first ap-proach cannot 
be carried out consistently. We will thus be left with the second approach as the only 
possibility. And this is, indeed, what will be the content of the remainder of the chapter.

Various authors, de Broglie [4], Cufaro-Petroni et al. [5], have proposed, for example, 
that we begin with the Klein-Gordon scalar equation regarded as the quantum wave 
equation for a single spin-zero particle. This is

 
(11.1)

(We will again put ħ=1 throughout this chapter.)
From this it follows that there is a conserved charged current

 
(11.2)

We could propose the guidance relation

 
(11.3)

But, as we have already pointed out in chapter 10, section 10.4, in order to be consistent 
this would require that j0 be positive definite. However, it is clear that j0 as given in (11.2) 
is not, in general, positive definite. Thus if the energy is well defined and positive, j0 is 
positive while if it is negative, then j0 is also negative. It is therefore already clear that this 
approach cannot be made consistent.

One might perhaps try to get around this difficulty by restricting  to positive energies. 
But there is no way, in general, to maintain such a restriction, because in principle a 
potential can always cause transitions from one sign of energy to the other. Therefore we 
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will always be faced with the possibility of a linear combination of positive and negative 
energies. For example, we can have

 (11.4)

This gives

 (11.5)

This can move between positive and negative values. So that even if we began with posi-
tive values of j0 we could not guarantee that j0 would remain positive indefinitely. More-
over in going from positive to negative values j0 must pass through zero. This will give 
rise to infinite velocities which do not make sense physically and which would in addition 
violate the relativistic requirement that υ≤ c.

Since we cannot make a consistent particle interpretation of the kind given above for the 
Klein-Gordon equation, it seems reasonable to conclude that we should adopt the alterna-
tive approach of regarding  as a field beable. The fact that j0 can be positive or negative 
is then understood through the notion that there can be positive and negative charges. This 
implies the possibility of pair production, so that the number of particles is not conserved.

Evidently in this approach there is no way to regard (11.3) as a guidance condition and 
the whole attempt to give a particle interpretation to this equation breaks down.

It has been proposed however that there are other conserved quantities which would 
give positive definite densities, and that these would make it possible to go on with the 
particle interpretation nevertheless (Wesley [6] and Prosser [7]). What they suggest is that 
one take the energy density, T00, and flux of energy, T0i, as a starting point. These satisfy the 
conservation equation

 
(11.6)

One would then define the particle velocity as

 
(11.7)

Thus in the Klein-Gordon equation we have

 (11.8)

and

 
(11.9)
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Since T00 is evidently positive definite, it is argued that a particle interpretation of the 
Klein-Gordon equation can after all be maintained.

A closer inspection shows, however, that such an interpretation would not be consistent 
with the theory of relativity (although in this chapter we are considering the field theory 
from a non-relativistic standpoint, it is still necessary that such a theory be applicable rela-
tivistically, or else we would contradict a large range of experimental facts).

To show the inconsistency of such a definition of velocity, let us now consider the 
case of a free particle and a special solution of the wave equation,  We 
obtain

 (11.10)

 (11.11)

and T02=T03=0.
We can always choose a Lorentz frame in which k1=0 and  while T0i=0. 

This corresponds, of course, to a particle at rest. If we now transform to a new Lorentz 
frame so that the particle has velocity υ=(υ1, 0, 0), we obtain

 
(11.12)

If (T00, T0i) is to represent particle density and current, it has to transform as a relativistic 
four vector, otherwise the integral of the probability will not be the same in every frame 
and the transformation between frames will not be unitary. This would require that the 
density in the new frame T′00 should be equal to  rather than to T00/1−υ2. We 
emphasise again that the difficulty arises basically because the charge current has to be a 
four vector and not a second rank tensor such as Tμν.

One can demonstrate even more striking inconsistencies in such an approach by consid-
ering the Maxwell field in free space. For this we have the energy density

 
(11.13)

The energy flux is given by the Poynting vector, so that

 
(11.14)

Let us consider the special case in which E is parallel to H so that E×H=0. Assume further 
E and H are in the direction x1. This means that, under a Lorentz boost in the direction x1, 
we will still have E′ parallel to H′ and E′×H′=0. It follows that the velocity is zero in a 
whole range of Lorentz frames. Clearly it will not make sense to say that a particle is at rest 
for this whole range of Lorentz frames.
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Yet another approach has been proposed for interpreting the Klein-Gordon equation 
through a particle model (see, for example, Nambu [8]). This is based on the assumption 
of an invariant parameter  which represents the order of development of a system. The 
suggested wave equation is

 
(11.15)

where □ is the d’Alembertian. If we look for solution of the form

 
 

we obtain

 (11.16)

Choosing  we see that this reduces to the Klein-Gordon equation. But there is a 
new feature because we can now obtain solutions with arbitrary values of K and the general 
solution is

 
(11.17)

This theory obviously has room for a whole range of masses. Indeed if the mass is fixed, no 
probabilities will depend on  because the wave function will be proportional to  
where α is a suitable constant. One can obtain a non-stationary state only by a linear com-
bination of terms corresponding to different values of K and therefore of different masses.

In this theory, the probability density is defined as the scalar  which satisfies the 
conservation equation

 
(11.18)

where jμ is given in (11.1). Since  is positive-definite, we can consistently define the 
guidance condition

 
(11.19)

Writing  we obtain from (11.15) the generalised Hamilton-Jacobi equation

 
(11.20)
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Where

 

 

is the generalised quantum potential.
In order to bring out the meaning of these equations, we first note that  has to be 

taken as the probability density in space-time for an event at a point (x0, xi). For example, in 
the usual interpretation it could be regarded as the probability in a measurement of finding 
a particle at the point xi and at the time x0, for a certain value of the invariant parameter  
In an ontological interpretation, it would however be the probability that, at this value of  
the particle actually is at this point in space-time. The velocity υμ would then be the rate of 
change of the coordinates of this space-time point with  

This theory evidently goes beyond the simple Klein-Gordon equation because its 
conceptual basis can only be understood in terms of a particle which may have a range of 
masses. For if the mass is fixed, the probability is, as we have seen, not dependent on  
so that there will be no way to discuss the statistics of the development of the system in the 
parameter  For the present we do not know how to determine what should be the actual 
mass spectrum. To do this would evidently require some extension of the theory involving 
further new concepts. For example, the particle may have some internal parameters and the 
quantisation of these might determine a mass spectrum. If this approach were successful, 
this mass spectrum should be that of the particles that are actually to be found in nature.

It is clear then that the parameter  introduces a new concept which goes together with 
the range of masses. The meaning of this concept is that we cease to regard x0 as determining 
the time order of development. Rather, x0 plays a role not very different from that of the 
space coordinates. Thus at a given value of  the wave function will, in general, spread 
over a range of xi and x0. There is no way in general even to be sure x0 will always increase 
monotonically with  for (as we have seen also in the earlier suggestions regarding the 
Klein-Gordon equation) υ0 can take on both positive and negative values. Interaction terms 
(which we have thus far neglected) can cause transitions between positive and negative 
values of υ0, so that an initial wave function representing a monotonic increase of x0 
with  can develop parts in which x0 goes on indefinitely decreasing with  (i.e. tracks 
parameterised by  can go backwards in x0). This is evidently a serious difficulty.

However, further difficulties arise when one considers how one would treat the many-
body system. If  represents the coordinate of the Nth particle, the wave function will be 

 A natural generalisation of the wave equation would be

 
(11.21)

Because  spreads out over the coordinates  of each particle, it follows that particles 
considered at a given value of  will not all have the same value of x0. Indeed they will in 
general not even be all located on a simple space-like surface. Rather they will be distributed 
over a range of x0 (which is, of course, time as meant in the usual sense). It is not clear 
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how this theory can be made to connect with the usual theory in which all the particles are 
considered at the same time, or at least on a single space-like surface.

Various authors (see for example Vigier [9]) have suggested that for the two-particle 
system, this ambiguity can be removed by considering the two particles at the same time 
in their centre of mass frame. But with many particles it is not clear which frame should be 
taken as the rest frame. Thus let us divide N particles into two parts with N1 and N2 particles 
respectively. In each part, all the particles could be taken at the same time in their overall 
centre of mass frame. But since the parts can be chosen arbitrarily, this leaves the whole 
question undefined. At the very least, this difficulty suggests that such an interpretation 
cannot be carried out unless the theory is supplemented by further conditions that determine 
the common time or space-like surface at which the particles are to be taken for a given  

There is yet, however, another conceptual difficulty. Because the wave functions  
spread out over a range of times for each particle, it follows that the quantum potential for 
the many-body system  will directly couple particles at different times. 
Nonlocality is thus extended from space to time. In one sense this seems reasonable as 
a way of making the theory relativisitically invariant. Yet the concept of nonlocal action 
over time introduces new difficulties for understanding causality in its usual sense. And 
because, as we have seen, parts of the wave function ‘travel backward in time’ for a long 
way, this difficulty will not be restricted to short time intervals.

To sum up then we would say that while this idea is an interesting one, we cannot 
use it confidently on the basis of an ontological interpretation until these difficulties and 
conceptual ambiguities are cleared up.

11.3 An ontological interpretation of bosonic fields considered from the non-
relativistic standpoint

In view of what has been said in the previous section, we feel that the only possibility 
for an ontological interpretation that is at present viable is to assume that the beables are 
the fields themselves. In this section we shall illustrate such an interpretation in terms of 
a real scalar field  with zero rest-mass along with its canonical momentum π(x). (A 
more condensed treatment of the electromagnetic field has been given in Bohm [10].) As 
indicated in the introduction, we shall in this chapter restrict ourselves to a non-relativistic 
standpoint and in the next chapter we shall discuss how our ideas can be extended to a 
relativistic context.

We begin with the idea of the configuration space of the total set of field beables. We 
recall that a good image of the meaning of this set can be obtained by approximating a 
continuous field by the field variables over a set of discrete but fairly densely distributed 
points,  which will ultimately approach a continuous set. The whole set of beables 
is then…,  To formulate the theory mathematically we introduce the well-known 
concept of functional derivative of any function of the whole set of beables  
This is
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If Ψ depends on the derivatives of  we may also have quantities like  
We shall not go into a detailed description here of this general notion of functional derivative 
(which can be found, for example, in Schiff [11]), but we shall use the ideas from now on.

For a scalar field the classical Lagrangian density is

 
(11.22)

In a particle theory the momentum canonically conjugate to x is  In a field theory, 
basically the same concept is used in the sense that the momentum canonically conjugate 
to  is

 
(11.23)

It is readily shown from an extension of the Euler-Lagrange equation that this classical 
field satisfies the wave equation

 
(11.24)

To quantise a particle theory we introduce the wave function ψ(…xn…). To quantise the field 
equation we introduce a corresponding wave functional  Evidently this 
wave functional depends on the whole set of values of  at every point in the universe. 
This then gives |Ψ|2 as the probability of a total given field distribution corresponding to 
a point in the configuration space of the overall field. In the standard quantum theory the 
classical number π(xμ) is replaced by an operator which can be symbolised as 

 
(11.25)

(This is analogous in the particle theory to Pop=−i(∂/∂xμ).) Πop(x
μ) acts on the wave 

functional  
We emphasise again that there are basic similarities between quantum field theory and 

quantum particle theory (as well as differences, of course). The main similarity is that the 
field variables at each point play essentially the same role as the particle positions do in 
the particle theory. This can be made even clearer by considering the Fourier analysis of 
the field in a cubic box with periodic boundary conditions. The non-denumerable infinity 
of field variables is replaced by a denumerable infinity of Fourier coefficients  with kx, 
ky, kz restricted to integral multiples of 2π/L where L is the size of the box. The functional 
derivative then becomes an ordinary derivative and the similarity to particle quantum 
mechanics becomes very obvious.
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To obtain the ontological interpretation of field theory we do just what was done in the 
particle theory, that is, we assume the basic set of dynamical variables  which 
we take to represent the beables, have well-defined and continuously changing values. As 
pointed out in the introduction, the trajectory of the beables corresponds to a single point 
in the configuration space of the total set of field variables. To determine this trajectory we 
begin with what we will call the super-Schrödinger equation which is

 
(11.26)

where H is the Hamiltonian given by

 
(11.27)

We then write  and obtain first of all

 
(11.28)

where Q is the super-quantum potential which we shall define presently. The above cor-
responds to the Hamilton-Jacobi equation of a particle system

 

 

We also obtain

 
(11.29)

where P=|Ψ|2 is, as we have already explained, the probability of a given configuration of 
the total set of field variables. This clearly corresponds in particle theory to the conservation 
equation

 

 

We can write
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(11.30)

This is an extension of the guidance condition for the particle case, which is

     (11.31)

The super-quantum potential will be

 
(11.32)

and this is comparable in the many-particle system to

 
(11.33)

From the extended Hamilton-Jacobi equation (11.28) we obtain the ‘field velocity’

 
(11.34)

Then equation (11.29) clearly represents the conservation of probability. The remaining 
equation of motion is obtained from (11.28) as

 
(11.35)

Putting (11.23) into the above we obtain 

 
(11.36)

In line with the particle case given in chapter 7, the classical limit is approached whenever 
Q becomes negligible. In this case, equation (11.36) reduces to the ordinary wave equation. 
However, in the quantum domain there is an extra term  In general, this is a non-
linear and non-local function of  As we shall see, it profoundly alters the meaning of the 
equation and leads to radically new implications. We emphasise again, however, that in the 
classical limit none of these will be significant.
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11.4 Analysis into normal modes and the ground state of the field

In order to discuss the ground state and excited states of the field, it will be convenient 
to go to a representation in terms of normal modes. To simplify the problem we may, as 
we have already suggested, consider a cubic box of side L and assume periodic boundary 
conditions. We take L to be finite, but much larger than any dimension of physical interest, 
i.e., in principle, as large as we please. The normal modes will then be trigonometric waves 
and an arbitrary field can be expressed as

 
(11.37)

where

 

 

and where nx, ny, nz are integers and V is the volume of the box. Because −k and k cover the 
same functions we should sum only over half the possible values of k, e.g. nx and ny cover 
all the integers positive, negative and zero, while nz is restricted to values greater than or 
equal to zero. Whenever the sum is taken with the above restrictions we shall write it as 
above  

We also introduce π(x, t), the momentum canonically conjugate to  which satisfies 
the Poisson bracket relations

 (11.38)

We Fourier analyse π(x, t) writing 

 
(11.39)

With the aid of (11.38) we then obtain the Poisson bracket relations

 
 

with all other Poisson brackets equal to zero. This means that ak, αk and bk, βk form a set of 
canonical variables.
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From (11.27) we obtain the Hamiltonian

 
(11.40)

which in terms of Fourier analysis becomes

 
(11.41)

It is convenient to go to the complex representation of the normal modes. Writing

 
(11.42)

we obtain

 
(11.43)

and

 
(11.44)

From the above we see that the reality of  implies that  and that  
We then obtain the Poisson bracket relations

 
 

with all other Poisson brackets being zero. And the Hamiltonian becomes

 
(11.45)

We can easily verify that the classical equations of motion are 
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so that

 
 

We now go to the quantum theory. We represent the wave functional in terms of the qk and 
 We are restricting ourselves to half the values of k as before. We then write

 
 

Because the system reduces to a set of independent harmonic oscillators, the wave functional 
can be expressed as a linear combination of the product functions,

 
(11.46)

Each  satisfies an independent Schrödinger equation representing a harmonic 
oscillator,

 
(11.47)

Writing  we obtain the equivalent Hamilton-Jacobi equation

 
(11.48)

The above result is similar to that obtained in the causal interpretation of a particle under-
going harmonic oscillation. The ground state of equation (11.47) then represents the zero 
point energy. Its wave function is

 
(11.49)

The ground state of the whole set of oscillators is then

 
(11.50)
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The quantum potential for this state is 

 
(11.51)

Writing

 

 

we get

 
(11.52)

Since the wave function is real,  and we obtain

 
(11.53)

This is, evidently, the usual expression for the zero point energy (note that each k corresponds 
to two real oscillators ak and bk so that the usual factor  is not present).

We shall now discuss the meaning of the wave function for the ground state, equation 
(11.50). Firstly, let us note that although the quantum potential will, in general, be nonlocal, 
in the special case of the ground state it reduces to a local function. In fact, it cancels the term 

 which, in the space representation, corresponds to  This is evidently a 
local function (as we shall see later it is only in the excited states that nonlocality appears, 
although in the classical limit it disappears again).

Let us now consider the significance of the probability distribution. (Wheeler [12] has 
considered this problem for the electromagnetic field and has obtained results similar to 
those that will be given here. His analysis is, however, developed in less detail and, of 
course, does not consider the role of the quantum potential.) We begin by expressing the 
qk in terms of  i.e.

 
(11.54)

(We have suppressed the coordinate t which will not be relevant in this context.) This 
yields

 
(11.55)
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where

 

 

To turn this sum into an integral, we introduce the density of k-vector which is V/(2π)3 and 
we obtain 

 
(11.56)

This is not a properly defined function but we can evaluate it by taking a limit in which 
there is a cut-off in k-space. We can represent such a cutoff by multiplying the integrand 
by a factor e−λk and allowing λ to become as small as we please. These integrations are then 
straightforward and the result is

 
(11.57)

where r=|x′−x|.
The probability function is then

 
(11.58)

This probability is largest when  and  have different signs. Therefore it is quite 
clear that for a given value of  it is highly improbable that a neighbouring field  will 
have the same sign within a distance of the order of λ. (Recall that A is as small as we 
please.) This point can be brought out more clearly by going to spherical polar coordinates 
where r=|x′−x|. The contribution to the probability coming from a field  which is on 
a shell of radius r will be

 

 

Clearly this probability can become very small for small λ and small r, when  and 
 have the same sign. It is therefore most probable that the field  is highly 

discontinuous, the sharpness of the discontinuity being dependent on the cut-off radius 
A. Such a discontinuity implies that the most probable spatial form of the field will be 
chaotic, i.e. in the sense of modern chaos theory [13]. However, this chaotic variation will 
be limited, because the variation of the qk will be the order of  as can be seen from 
equation (11.50).
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Because  it follows that the field is static. This result is surprising 
as one generally thinks that the zero point fluctuations of the vacuum correspond to some 
kind of chaotic dynamical behaviour. We can, indeed, obtain such a dynamical behaviour 
by introducing the further assumption that the field is taking part in a random fluctuation 
in which the mean value of  is zero. This would be along the lines suggested in our 
stochastic particle interpretation given in chapter 9. However, for the purposes of the 
present treatment, we shall confine ourselves to the initial deterministic model, which we 
emphasise is completely self-consistent.

The ground state energy which we ordinarily ascribe to the dynamic behaviour will 
now be attributed to the super-quantum potential. This is analogous to the particle case in 
a stationary state, with p=0 and E=V+Q, or alternatively Q=E−V. In the classical case, 
we have T=E−V. So Q is in some sense playing a role analogous to T. For example, in an 
excited state, the energy of the quantum potential enters into the quantum transitions in the 
same way that the kinetic energy would in the classical limit. And if, as we have suggested 
above, the energy of the quantum potential is accounted for by further random motions, 
then the analogy to our ordinary way of thinking will be very close.

Whether we take the static or dynamic model, the ground state is not covariant because 
it defines a favoured frame in which either  or its mean value is zero. Will this be 
consistent with relativity? We will discuss this question in the next chapter.

11.5 The excited state of the field

There is a considerable range of possible forms for the excited state of the field. One of 
these is the well-known set of Fock states in which the number of quanta and the energy 
are well defined. Another is the set of coherent states [14], which are especially suited to 
the discussion of the time dependence of the field and its approach to the classical limit. 
We will discuss these in detail in the next section. For the case where the mean quantum 
number is low, both kinds of states lead to the same results for most purposes. However, 
as we shall see, for states with high quantum numbers there may be significant differences 
between the two types of state.

Let us begin with a treatment of the Fock state. A typical wave function for the excita-
tion of a normal mode qk with a definite k-vector is

 
(11.59)

The probability function is

 (11.60)

What this means is that the actual field in the excited state will in general not look very 
different from that of the ground state. As a function of x we will have
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(11.61)

The factor |Ψ0|
2 will still represent a generally chaotic variation. However, the integral in 

front implies a tendency for waves with vector k to be emphasised relative to the original 
chaotic distribution. From the actual value of the field one could therefore not say for 
certain whether the state is excited or not because the same field configuration could exist 
in either state. Indeed, the degree of excitation is determined only with the aid of the super-
quantum potential which involves the state of the whole as discussed in chapter 4 in the 
treatment of the many-body system.

A wave functional having only a single normal mode excited is an extreme abstraction. 
A more realistic representation of the state would involve something like a wave packet. 
To represent such a packet we need a range of wave vectors, fk. In this case the wave packet 
will take the form

 
(11.62)

In the above equation, the sum is over all k and we do not make the restriction that 
 because the wave functional is, in general, complex even though f(x) is real. 

Indeed considering that  we can also write

 
(11.63)

where the ∑k′ indicates summation over a suitable half of the total set of values of k as 
discussed before. For the applications made in this chapter we may assume that f0=0, i.e. 
the space average of the field is zero.

To obtain the time dependence of Ψ, we note that the state qkΨ0 and  both have the 
same energy k, so that they oscillate as exp(−ikt). In this case the wave function becomes

 

 

It is clear from the above that the qk terms correspond to running waves in the direction +z, 
while the  terms correspond to running waves in the −z-direction.

To simplify the discussion let us form a wave packet running only in the +z-direction. 
This will be sufficient to illustrate the general meaning of the super-quantum potential for 
these wave packets. We obtain

 
(11.64)
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where

 
(11.65)

To interpret this, it is convenient to write, in accordance with equation (11.37),

 

 

and define

 

 

and

 

 

with  We note that  and  are orthogonal. Similarly, we split F(x) into two 
parts Fc and Fs with

 

 

and

 

 

We further note that Fs is orthogonal to  and Fc to  Using these orthogonality relations 
we then obtain

 
(11.66)

This wave function will be large in absolute magnitude for fields in which  and 
 where αc and αs, are real and positive proportionality factors. This follows 

because the total integrand is then a non-negative function of both integrands. Fields that are 
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not proportional in this way will tend to produce a smaller integral because of cancellation, 
and this is especially true for the fields that are orthogonal to those described above.

Introducing Γ(x) to represent the part of the field that is orthogonal to Fc(x, t) and Fs(x, 
t) we can write

 (11.67)

The most probable state will then be one in which αc and αs are as large as possible (but 
let us recall that within the Gaussian function, Ψ0, will tend to limit the variation of the 
overall field). 

It is therefore most likely that the field  will have the form of a wave packet cor-
responding to αcFc(x, t)+αsFs(x, t). The functions Γ(x, t) which are orthogonal to Fc(x, t) 
and Fs(x, t) will then not affect the factor in front of Ψ0. This means that their variation will 
be the same as it is in the ground state. Therefore the generally chaotic variation of the field 
as a whole will be modified by a statistical tendency to vary around an average which has 
the form of a wave packet as described above.

We shall now show that inside this wave packet the super-quantum potential intro-
duces nonlocal connections between fields at different points separated by a finite distance 
(unlike what happens in the ground state). To obtain the quantum potential, we must first 
write down the absolute value of the wave function in the qk representation. Recalling that 
we are choosing f−k=0 in equation (11.63), we write

 

 

Then writing

 

 

we have

 (11.68)

The quantum potential is

 

 

Let us now evaluate the change of quantum potential, ΔQ, from the ground state. This is
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(11.69)

In a wave packet which has only a small range of wave vectors, the factor k on the right-
hand side reduces to a fixed number k0, while the remaining factors reduce to unity. This 
term then gives the extra energy of the whole field above the ground state (recalling that 
only one quantum has been excited). More generally, this term varies with the time in a 
rather complex way, but it will be sufficient for our purposes to consider only those wave 
packets in which the spread of k makes a negligible contribution to this term. 

What will be of interest to us is the remaining term. When the qk are expressed in terms 
of  through equation (11.54), the quantum potential then reduces to

 
(11.70)

Clearly this term implies a nonlocal interaction between  at one point and the  at other 
points for which the integrand is appreciable. Writing Q=ΔQ+Q0, where Q0 is the quantum 
potential of the ground state given in equation (11.55) we can write the field equation 
(11.36) as

 
(11.71)

Using equation (11.55) and expressing Q in terms of  by Fourier analysis we obtain

 

(11.72)

Recall that in the ground state, the field is static because the effect of the quantum potential 
cancels out  in the field equation. But now in the excited state there is a further term 
which causes the wave packet to move. As happens with the quantum potential itself, the 
field equation is nonlocal as well as nonlinear. This nonlocality represents instantaneous 
connection of the field at different points in space. However, it is significant only over 
the extent of the wave packet. In the usual interpretation the spread of the wave packet 
corresponds to a region within which, according to the uncertainty principle, nothing 
at all can be said as to what is happening. Therefore the causal interpretation attributes 
nonlocality only to those situations in which, in the usual interpretation, no well-defined 
properties at all can be attributed.
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It is important to note that a wave functional of the form Ψ=qk exp[−ikt]Ψ0 does not 
correspond to the usual picture of an oscillation. This can be seen from equation (11.72) 
because the term  is absent. This result follows essentially because, as explained in a 
previous chapter, stationary wave functions generally correspond to a static situation in 
contradiction to our intuitive expectations of a dynamic state of movement.

11.6 Coherent states and the classical limit

In the previous section we discussed how Fock states are to be understood in terms of our 
ontological interpretation and we found that although our results are consistent, they do not 
correspond to our ordinary physical intuition as to what to expect under these conditions. In 
order to obtain wave functions giving results that are closer to such intuitive notions as well 
as to give a treatment that applies as we approach the classical limit, we may use coherent 
oscillator wave functions (generally called coherent states in the usual interpretation [14]). 
To illustrate what is meant by a coherent oscillator wave function, let us consider a particle 
with coordinate x undergoing harmonic oscillation. The Schrödinger equation is

 

 

Introducing  where  we obtain

 

 

The ground state wave function is

 

 

One can show by direct differentiation that a solution for Schrödinger’s equation is obtained 
by writing

 (11.73)

where γ is a complex number which we can write as γ=|γ|e−iθ. We can rewrite the above as

 
(11.74)
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The latter exponential is a factor that can be absorbed into the normalising coefficient. This 
solution, therefore, represents a Gaussian wave packet whose centre oscillates harmonically 
with amplitude |γ| and initial phase θ. The mean momentum (in these units) at any time, t, 
is |γ|sin(ωt+θ).

Evidently the packet oscillates as a unit. Wave functions of this kind which are, of 
course, not stationary are what we have called coherent wave functions. They represent the 
nearest approximation to the classical behaviour of an oscillator.

If a† represents the creation operator for a quantum (so that a†a=N is the number operator) 
then one can show [14] that

 
(11.75)

The probability for the nth state of excitation is

 

 

This is a Poisson distribution and the most probable value of n is n=|γ|2. The root-mean-
deviation is  or  For large values of |γ|, although the number of 
quanta is indefinite, the fractional deviation of this number from the mean approaches 
zero. This behaviour further shows the classical significance of coherent wave functions of 
high |γ|, because their energy becomes nearly determinate in the sense that the fractional 
deviation is small, while the absolute magnitude of the indeterminacy in energy becomes 
large enough so that one quantum more or less makes no significant difference. Therefore, 
in interactions with other systems, the oscillator with a coherent state of high mean energy 
behaves nearly like a classically well-defined object.

To further show up the classical significance of such wave functions, we evaluate the 
quantum potential and compare it with the classical potential. The quantum potential (in 
these units) will be

 (11.76)

but because of the Gaussian probability function, the range of fluctuation of particle posi-
tion and therefore of the quantum potential (which is essentially proportional to the argu-
ment of the Gaussian) will be of the order of 1 (in these units). Evidently, as the absolute 
value of |γ| becomes large, the total energy (which is kinetic+potential+quantum potential) 
will be correspondingly large and therefore much greater than the quantum potential. Since 
the quantum potential can be neglected, the dynamics will then be essentially that of clas-
sical mechanics. 

Of course, the coherent state represents classical motion under conditions in which, in 
the usual interpretation, we would say that x and p are defined as accurately as possible 
within the limits of the uncertainty principle. However, more general wave functions are 
clearly possible which approach the classical limit in the sense that the quantum potential 
can be neglected but which correspond to much greater uncertainty in x and p.
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It is evident that we can discuss coherent wave functions for the radiation oscillators 
in a straightforward way. For low degrees of excitation the coherent wave function of an 
oscillator given by equation (11.75) can be approximated as

 (11.77)

This represents a time-dependent linear combination of the ground state and the first excited 
state. For most purposes, such as calculating probability of transitions, the results obtained 
from such a state are essentially the same as those obtained from the corresponding Fock 
state which is not time-dependent and in which the number of quanta is well defined. The 
only difference is that the mean field will oscillate harmonically in the coherent state while 
it does not do so in the Fock state.

The most interesting case to consider is that of a wave packet in which the mean value 
of  actually moves with the form of this packet even as we approach the limit of high 
quantum numbers. To obtain this we go back to equation (11.73), writing for the wave 
function of an oscillator

 

 

It will be convenient here to return to expressing the field  in terms of ak and bk, the real 
and imaginary parts of qk. This field is

 

 

We want a packet in this field whose average behaviour is given by

ak=|rk| cos[ωkt+δk]  

and

 
 

The appropriate overall wave packet will have to be made up of a product of states 

 

(11.78)
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For large rk and sk this will represent a very nearly well-defined state of movement as a 
wave packet (corresponding, for example, to the oscillations of an electromagnetic field 
in a resonant cavity). In this state the average field will have a packet form and there will 
be random Gaussian deviations from this packet which become negligible when the mean 
amplitude is great enough. This means that, as pointed out in the introduction, the particle-
like properties fade away and we are left with the field beables as an essentially complete 
description of the system. (Essentially because the super-quantum potential produces neg-
ligible effects.)

11.7 The concept of a photon

Thus far in discussing wave packets we have not encountered any of the discrete quantised 
properties of the electromagnetic field. We shall now show how these come in by discussing 
the process of absorption of energy from the field by an atom which goes from the ground 
state to an ionised state. If the field is in an excited state with a single quantum of energy 
then it will interact with the atom. During this interaction, a very complex wave functional 
of the field together with the atom will develop. The resulting super-quantum potential 
can change dramatically to bring in bifurcation points. When the process is complete the 
whole system of field plus particle will then either remain in the initial state or will enter 
into a new state in which a quantum of energy has gone into the atom, while the field is left 
in the ground state. As we have already suggested in the introduction, the super-quantum 
potential, being nonlocal, sweeps up energy in this way from the whole wave packet and 
brings it to the atom. The discrete quantised manifestations of the field are thus explained 
in terms of a theory which nevertheless allows the fields to vary more or less continuously 
over a wide range of values.

The treatment is very similar to that of the Auger-like effect which we discussed in a 
previous chapter. We begin with the initial wave functional of the field, which for math-
ematical simplicity we treat as a scalar field. This is given by equation (11.62), which 
represents a packet of Fock states with one quantum of excitation,

 

 

The initial wave function of the electron in an atom is ψ0(ξ−ξ0) where ξ0 represents the 
coordinates of the centre of the atom. The combined initial wave functional is

 

 

We assume an interaction Hamiltonian
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(11.79)

What this means is that the particle interacts locally, i.e. only at the central point of the 
atom.

As happened in the Auger-like effect, the interaction Hamiltonian will introduce further 
terms into the overall wave function. The coefficient qk is the sum of a creation operator 
and an annihilation operator. In this case, only the annihilation operator will be significant 
and it will produce the ground state of the field. The quantum of energy will then go into 
the particle at ξ. We assume that this energy is considerably more than enough to ionise the 
atom. The final wave function of the electron can be written as ψf=∑n Cnψn(ξ, t) where the 
ψn(ξ, t) represent packets going in various directions. Perturbation theory then enables us to 
compute Cn as function of the time. The final wave function for the whole system is

 
(11.80)

where αn(t′, t) can be calculated using ordinary time-dependent perturbation theory along 
the lines explained in chapter 6.

The coefficient αn(t′, t) is proportional to Vn0, which is the matrix element between the 
initial state ψ0 and one of the final states ψn of the electron. In more detail this is

 
(11.81)

with ξ′=ξ−ξ0. (The term ∑k fk exp [ik·(ξ′+ξ0)] has arisen by taking the matrix element of the 
field between its initial excited state and final ground state.)

What equation (11.80) means is that during a small time interval dt, a contribution to the 
wave function will be produced which will be described by the integrand. This contribution 
is multiplied by the ground state of the field. 

The packet functions ψn(ξ, t−t′) correspond to particles that move in a direction repre-
sented by n and are set in motion at t=t′. These packets will all separate so that they cease 
to overlap both with each other and with the initial wave function y0.

Returning to the ontological interpretation as applied to the electron, we can say as 
shown in chapter 6 that the corresponding particle will eventually either enter one of the 
outgoing packets or it will remain in the initial state still bound to the atom. After it enters 
one of these channels, it will remain there indefinitely. Moreover, because the packets do 
not overlap with each other or with the initial wave functional, the quantum potential in 
each channel will be the same as if the other channels did not exist. In other words, as 
explained in chapter 6, all the effects of the collapse of a wave function will be present 
without any actual collapse having occurred. Furthermore, as also explained in chapter 6, 
when the electron goes on to interact with the thermal environment, the probability that 
these packets could ever come to interfere again will be negligible.
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The effective wave function of the combined system then reduces to

 (11.82)

where nf signifies the packet actually occupied by the particle. This represents a situation 
in which the particle now carries away a discrete quantum of energy, while the field is left 
in its ground state.

As we have indeed already indicated, during the period of transition the quantum 
potential will be very complex and will contain many bifurcation points, implying a highly 
unstable movement of the whole system. According to the initial conditions of the particle 
and of the total field, the whole system will in some cases enter channels corresponding 
to a complete transition in which a whole quantum of energy has been absorbed by the 
particle, while in other cases no absorption will have taken place. These initial conditions 
are very complex because they include not only the particle position, but also the initial 
configuration of the entire set of field beables which are, as we recall, basically chaotic 
in their distribution. A very slight change in the initial field configuration could, in many 
cases, change the result from one outcome to something very different, for example from 
absorption of a quantum to non-absorption. However, when the probability of transition is 
worked out using the assumptions that the initial conditions have a distribution of field and 
particle variables corresponding to P=|ψ|2, then the usual probability of transition will be 
obtained.

This probability is proportional to |Vn0|
2 where Vn0 is the matrix element given in equa-

tion (11.81). It will be useful to transform this equation by first introducing the function

 

 

This is essentially the spatial form of the mean wave packet as determined by the Fourier 
coefficients fk, which appeared in the original wave functional of the field (11.62). It is clear 
that the wave functional of the field determines a function K(ξ) which is the nearest that 
one can come to what the classical field would be in the corresponding classical situation. 
We may then expand exp[ik·ξ′]=1+ik·ξ′ because ψ0 is generally appreciable only in regions 
considerably smaller than the typical wavelength in the packet. Then noting that ψ0(ξ′) and 
ψn(ξ′, 0) are orthogonal where ψn(ξ′, 0) is the value of ψn at t−t′=0, we obtain

 

(11.83)

This means that the matrix element depends on the mean field K through its gradient. The 
fact that it depends on the gradient has come about because we are working with a scalar 
theory. With a vector theory it would not depend on the gradient in this way. However, this 
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difference is not of fundamental significance because it means only that the probability 
of transition depends on the gradient of the mean field function (so that, for example, the 
maxima will occur at points of steepest gradient rather than at points of greatest intensity 
of the wave).

When the ground state is spherically symmetric, the probability of transition, P, will also 
be spherically symmetric so that

 (11.84)

We thus complete the demonstration that, although the field is essentially continuous, the 
possibility of transfer of energies is discrete and quantised according to the usual rules. 
Evidently, similar results will be obtained for emission, excitation, etc.

By means of a calculation similar to that leading to equation (11.72) it can be shown that 
the energy distributed throughout the wave packet is swept up through the nonlocal and 
nonlinear effects of the quantum potential. The fact that the amount of energy transferred 
is ‘quantised’ can be understood by noting that in the long run the effective wave function 
has to take the form of an excited state in which the energy differs by a definite and discrete 
amount from the ground state.

Thus far we have considered an excited field incident on a single atom. What would 
happen if there were several such atoms in different positions that could be reached by the 
wave packet? (This is essentially the situation considered by Renninger [1], but simplified 
by taking a plane wave as the limit of a spherical wave of infinite radius.) Is it possible then 
that we would still end up, as experimental fact requires, with a single quantum of energy 
transferred to only one of these atoms while the others remain unexcited?

To treat this problem we would need to introduce not only the wave functional of the 
field, but also the wave functions  of the various particles. If we 
did this however, the perturbation theory could still be applied as in the one-particle case. 
The state in which a quantum had been absorbed would contain a linear combination of 
free states of the various particles. But this would correspond to having several possible 
channels of this kind. Our treatment would still go through and the particle would end up in 
one of these channels. The channel in which the quantum is absorbed is determined by the 
precise initial conditions of the particles and of the set of field beables as a whole (recalling 
that the whole process will, in general, be unstable and chaotic). However, the probability 
of each outcome will still be the same as in the usual interpretation.

Finally, in section 11.2, we showed that it is not possible to make an ontological 
interpretation of the field in which there would be a well-defined particle trajectory. How 
then is it possible to understand the observed fact that a γ-ray, for example, passing through 
a gas, not only leaves a trail of ionised particles looking like a track, but also shows an 
observable development in time which suggests a bullet-like object, i.e. a photon, striking 
one atom after the other as it moves along? To understand this we must first recall that, 
as has already been pointed out in the introduction, this bullet-like object is never itself 
observed. All that can ever be observed are the manifestations of the field in particulate 
matter (e.g. by ionising gas atoms or producing the photo-electric effect, etc.). So it cannot 
be concluded that experiments have proved the existence of ‘particles’ of light.
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The way is therefore open for a different explanation such as that which we are proposing 
here. This is that basically what is happening is that the electromagnetic field is undergoing 
inelastic scattering involving definite quanta of field energy in the way we have described 
earlier. We need not go into detail here, but we shall merely recall that this scattering is 
brought about, roughly speaking, by the absorption of a quantum of energy which is swept 
up into the atom and by the re-emission of a quantum of a slightly lower energy moving 
in a slightly different direction. If the initial energy of the quantum is large compared 
with that absorbed by the atom, then a series of such inelastic scatterings will determine a 
distribution of ions resembling a jaggered track.

In order to bring out the time development of this track one could, for example, have an 
initial wave packet that is narrow compared with the distance between the atoms. It would 
then follow that one scattering process after another would take place, as if there had been 
a bullet-like particle responsible for these events. However, even if the wave packet were 
broad, a similar result would follow. For, as shown in chapter 5, a transition process can 
take place in a time much less than that required for the wave packet to pass a given point. 
When such a process takes place, e.g. the ionisation of an atom, the subsequent behaviour 
follows at a relatively well-defined time in a way that is independent of the width of the 
wave packet.

We conclude that even though our ontological interpretation does not imply any boson 
particles such as photons, it can still explain all the experimental behaviour that has been 
attributed to such ‘particles’ in the usual interpretation.

11.8 Interference experiments

11.8.1 The treatment of interference

We are now ready to discuss how interference is to be treated in the onto-logical interpretation 
of the quantum theory. We shall do this by assuming that quanta of the field are detected 
by atoms that absorb discrete units of energy in the way described in the previous two 
sections. We shall see that in an interference experiment with two slits, for example, the 
probability of absorption will be proportional to what would be thought of classically as the 
field intensity at the point where the atom is located. Of course, this probability will vary 
in just such a way as to explain the observed interference patterns.

We shall then go on to discuss the Pfleegor-Mandel experiment [3] in which two 
independent laser sources are excited in such a way that there is only one quantum of 
energy in the whole system. (A more detailed discussion of this topic can be found in Paul 
[15].) If the two lasers can interfere in a certain region of space, this gives rise to a paradox 
when we try to think of where the photon that is absorbed ‘comes from’. In our treatment 
this situation presents no serious problem. The energy is distributed throughout the space 
between the sources, while in the process of absorption, it is swept into the single atom by 
the action of the nonlocal, nonlinear quantum potential. 
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Figure 11.1: Two-slit interference

11.8.2 The two-slit interference pattern

Let us now return to a consideration of the interference in the two-slit experiment. To simplify 
the discussion we shall assume a resonant cavity with one of its normal modes excited to 
its first quantum state. Let us suppose that two small holes are made in the cavity close to 
each other, as shown in figure 11.1. We assume that this will make a negligible change to 
the normal modes inside the cavity. In the classical description, waves will radiate out from 
the holes 1 and 2, and will interfere in the region A. We will treat this by representing the 
field inside the cavity by  and the field outside by  It will be convenient to treat  as 
the sum  and  of the contributions from slits 1 and 2 respectively. The effective normal 
mode is then  Of course, this is an approximation that will be valid if 
the holes are small enough so that the overall wave function will not change appreciably 
during the course of an experiment.

The probability of transition is not determined by  alone but depends on K in the way 
given by (11.84). As we have said earlier, K is the spatial form of the mean wave packet as 
determined by the Fourier coefficients fk,
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As with  K can be written as a sum with three terms, K=Kc+K1+ K2 where Kc represents 
the value of K inside the cavity and K1 and K2 represent the contributions from slits 1 and 
2 as propagated from the cavity.

If we place an atom at point A where the contributions of the two slits overlap, the 
probability of transition will then be

 (11.85)

This shows the characteristic interference structure. Thus in a statistical ensemble of 
experiments performed with the same wave functional, the usual fringes will be obtained. 
As we have indicated in the previous section, the fact that they depend on the gradient of the 
field is due to the use of a scalar field (which would follow also in the usual interpretation). 
With a vector field it is readily shown that probability is indeed proportional to the field 
intensity [16].

11.8.3 The Pfleegor-Mandel experiment

Let us now go on to the Pfleegor-Mandel experiment [3]. We shall treat this in terms of 
two resonant cavities C1 and C2, each with a small hole in it. The beams coming out of the 
holes will cross at A as shown in figure 11.2. Each cavity will have normal modes denoted 
respectively by the functions K1 and K2. As in the interference experiment, we divide each 
of these into a part that is inside and a part that is outside the cavity,  and 

 Suppose that one of these lasers is excited to the first excited Fock state 
while the other is left in the ground state. (It is easy to show that a similar result for this 
experiment would be obtained for coherent states as well.) According to equation (11.59) 
the overall wave functional is then

 

 

where Ψ0 is the vacuum state and where f1k is the Fourier coefficient of K1. But if the second 
laser is excited, then the overall wave function is 
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Figure 11.2: Idealised Pfleegor-Mandel experiment

However, linear combinations of such wave functional are possible corresponding to their 
being in phase or out of phase. When they are in phase the wave functional is

 
(11.86)

while the ‘out of phase’ wave functional is

 
(11.87)

With these two wave functional it is not possible to attribute the quantum of energy to 
either laser.

To have two lasers with definite phase relations of this kind is, however, essentially 
the same as considering two wave packets with a definite phase relation as discussed in 
section 11.4. It follows from what we said there that the energy will be distributed between 
the two lasers in a way that varies statistically. Therefore the usual mode of talking about 
this, namely, that the entire quantum of energy is either in one laser or the other, with equal 
probability, is not valid.

If we now suppose that an atom is placed at A to absorb a quantum (see figure 11.2), 
the super-quantum potential would ‘sweep up’ the energy from both lasers to constitute 
a full quantum. However, in a statistical ensemble of experiments of this kind one would 
obtain the usual interference pattern. In this way the ontological interpretation provides a 
simple means of understanding what otherwise seems a very paradoxical situation in this 
experiment.
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11.9 The EPR experiment

We now go on to apply our ontological interpretation to the EPR situation. Because we 
are working in terms of a scalar field, we cannot discuss the usual example in terms of 
polarisation or spin. Rather, we shall return to something more like the original EPR 
experiment. This example has thus far been applied only to particles. In this case there 
was a wave function δ(x2−x1−a) representing a situation in which whenever particle 1 is 
found at x1, particle 2 will be found at x2=x1+a. And, of course, whenever the momentum 
of particle 1 was measured, that of particle 2 would be the opposite. This meant that it 
was possible to measure either the momentum or the position of particle 2 by making 
measurements on particle 1 only.

In order to transpose this experiment into a field-theoretical context, we first replace 
δ(x2−x1−a) by a function S(x2−x1−a) which is sharply peaked but regular, and can be 
Fourier analysed as

 

 

If the width of the function S is considerably less than a, then clearly the conditions of the 
experiment are not significantly altered but we can avoid the mathematical difficulties that 
arise from the δ-function.

The experimental situation that we envisage is to have two normal modes of the field, 
each excited with opposite momentum, but in a correlated way and with the distance 
between the respective regions of excitation of these normal modes approximately equal to 
a. The detection of the position of these normal modes will be again by means of an atom 
that absorbs one of the quanta near the position of the atom ξ0 (with the initial wave func-
tion of the electron that absorbs the quanta being ψ0(ξ−ξ0)). What we have to do is to show 
what happens to the other normal mode when this process of position detection takes place 
on the first normal mode.

The initial wave functional of the combined system of field and particle will then be

 
(11.88)

or

 
(11.89)

Let us now consider detection of the position of the normal modes in more detail. We can 
see from equation (11.89) that there will be a statistical tendency that whenever the field  
is excited at x1, there is a corresponding excitation at x2=x1+a (and this is, of course, just the 
experimental situation we wish to consider). To treat the process of detection of position, 
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we introduce the Hamiltonian for interaction between the field and the atom which we 
represent as

 

 

This Hamiltonian will lead to the absorption of a quantum of energy associated with, say, 
qk. Because the two quanta of energy are oppositely correlated in momenta, this will leave 
the total field with only a single quantum associated with  and it will introduce a 
factor into the wave functional exp(−ik·ξ). 

However, as shown by equation (11.80), this term will also bring about a transition of 
the particle wave function from ψ0(ξ−ξ0) to a final wave function which includes terms 
such as ψn(ξ, t). Each ψn determines a sep-arate channel, and eventually the electron enters 
one of them,  after which the other channels may be dropped from consideration. The 
final wave function of field plus particle will then be

 
(11.90)

(Recall  when  is real.) We are left with

 
(11.91)

This result is the same as the one we would obtain using the usual quan-tum theory, which 
effectively contains the assumption of the collapse of the wave function to the final state. 
However, in the ontological interpretation there has been no collapse, but an equivalent 
result has been brought about by the action of the super-quantum potential. The field now 
fluctuates in a region near x=ξ+a. The absorption of the quantum of energy by the atom at 
ξ has therefore given a more definite shape and form to the remaining field at x=ξ+a. This 
is, of course, a nonlinear and nonlocal effect of the super-quantum potential.

To complete the discussion of the EPR situation, we now need an ex-periment in which 
the momentum is determined rather than the position. One way of measuring momentum 
of a quantum is through the Compton effect. For example, if the frequency of the quantum 
in one of the normal modes is ν, we can measure this frequency by scattering the quantum 
from a very weakly bound electron. The quantum will be absorbed and a new quantum will 
be emitted with frequency ν′ and with an angle, θ, relative to the original wave vector. The 
electron absorbs the energy difference ν−ν′ and scatters at an angle  with momentum p.

Using conservation of energy and momentum, we obtain by means of a well-known 
calculation

 
(11.92)
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By measuring p and  for the recoil electron, we can therefore find the value of ν. And 
according to the reasoning behind the EPR effect we expect the second normal mode to 
have the same frequency but the opposite momentum. To make clear how this comes about, 
let us represent the initial state of the electron by ψ0(ξ−ξ0). This will be very poorly localised 
so that the range of momenta will be small. The limiting accuracy of the measurement will 
be determined by this range of momenta. To treat this problem in detail would involve time-
dependent perturbation theory for the scattering process which includes the absorption of 
the original quantum and emission of the new quantum in another direction. However, 
for our purposes here we do not have to go into all the details. It is sufficient to take 
into account the fact that the initial wave function of the electron, ψ0(ξ−ξ0), goes into 
a linear combination of packet functions, ψn(ξ, t), representing the recoil electron. Each 
of these packets will constitute a channel and the electron will enter one of them so that 
thereafter the other channels can be neglected. We know from a more detailed mathematical 
treatment that these packets are very nearly plane waves with a range of wave numbers k 
corresponding roughly to the range in ψ0(ξ−ξ0).

Let us denote the creation operator initially associated with the first normal mode, by qk, 
while the corresponding scattered quantum will be associated with qk′ (which has a different 
direction from qk as well as a different energy). If the recoil electron determines that the 
quantum originally in the first normal mode had frequency ν (and therefore momentum 
k=ν), it follows that the final wave function will be effectively reduced to

 (11.93)

This result shows that after the Compton effect has taken place, not only does the scattered 
quantum go into a definite state associated with qk′, but also that the quantum in the second 
normal mode goes into a definite state associated with q−ν. In other words the measurement 
of the properties of the recoil electron determines that the second normal mode transforms 
into a wave-like form correlated to the results of this measurement even though, according 
to the usual interpretation, there is no connection between the first normal mode and the 
second. But, of course, in our interpretation this is brought about by the super-quantum 
potential, and thus the explanation is basically similar to that given for the EPR situation 
with particles.

11.10 Appendix: the destruction of interference by radiation

In chapter 8, section 3, we explained how radiation falling on a large object, such as a 
planet in space, can eliminate the possibility of interference between contributions of dif-
ferent parts of its wave front. In section 4 of chapter 8 we actually proved that this would 
happen when a distribution of particles falls on such an object, but we deferred the proof 
that this would happen for radiation until now. 

The situation we are discussing is shown in figure 8.2 (chapter 8) in which radiation is 
assumed to be falling on the planet. We consider two possible positions of the planet, A 
and B, and the shadows  and  which would be cast from the respective positions. 
In section 4 of chapter 8 we saw that particles would cast similar shadows and we proved 
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that if there is a large enough number of such particles, the overlap between the total 
wave function for the planet at A and for the planet at B will become negligible so that 
interference in a region O (see figure 8.1) will be destroyed.

A very similar treatment can be given for radiation. Let us suppose there is a beam of 
radiation incident in the z-direction constituted of quanta having some range of k-vectors. 
A Fock wave function for a single quantum of definite wave vector ks can be written as

 (11.94)

where Ψ0 is the ground state wave function for all the quanta as given in equation (11.49)

 
(11.95)

We are assuming that the planet completely absorbs the quantum if it falls on it, otherwise 
we suppose that nothing happens. We now write

 

 

where  is the field at x. The contribution to the net wave function when the planet is 
at A can be written as

 

 

where SA is zero in the shadow of the planet and is unity otherwise, while ΦA(y) is the 
planetary wave function for the region A. The above expresses the fact that the excited 
state of the field wave function will only occur outside the shadow of the planet while in 
the shadow we have only the ground state.

The corresponding contribution when the planet is at B is

 
 

We must now estimate the overlap between Ψ1 and Ψ2. When we treated the case of 
particle bombardment in chapter 8, section 4, this was simple as there was no overlap of 
the trajectories corresponding to the two cylindrical shadows  and  With fields 
the situation is a bit more complicated because what we have to consider is not an overlap 
of positions, but rather of field variables between the excited state wave function and the 
ground state wave function. Because the Gaussian ground state has a finite spread of field 
variables, there is some overlap between this wave function and the first excited state wave 
function corresponding to the single quantum. Nevertheless this is evidently less than the 
overlap of the first excited state with itself. So there will be some decrease of overlap and 
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will give rise to a fraction F of overlap which will be less that given by F in chapter 8, 
section 4 for the case of particles. 

So we may write

 

 

where  may be estimated to be of the order of one-half. From here on the proof can be 
carried through as in chapter 8, section 4. Therefore when we consider N quanta, we will 
find that the overlap is decreased by a factor  

We conclude that when there are sufficient quanta falling on the planet, the interference 
between planetary wave functions coming from different parts of the wave front can be 
neglected.
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 Chapter 12  
On the relativistic invariance  

of our ontological interpretation

12.1 Introduction

In this chapter we shall examine the question of how far Lorentz invariance of our 
ontological interpretation can be maintained.

We shall see that it is indeed possible to provide a Lorentz invariant interpretation of the 
one-body Dirac equation. For the many-body system we find that it is still possible to obtain 
a Lorentz invariant description of the manifest world of ordinary large scale experience 
which we introduced in chapter 7. In addition we show that all statistical predictions of the 
quantum theory are Lorentz invariant in our interpretation. This means that our approach is 
consistent with Lorentz invariance in all experiments that are thus far possible.

When this question is pursued further however, it is found that we cannot maintain a 
Lorentz invariant interpretation of the quantum nonlocal connection of distant systems. 
This is, of course, not surprising. Indeed we show that there has to be a unique frame in 
which these nonlocal connections are instantaneous. A similar result is also shown to hold 
for field theories. These likewise give Lorentz invariant results in the manifest world of 
ordinary experience and for the statistical predictions of the quantum theory. But where 
individual quantum processes are concerned, our onto-logical interpretation requires a 
unique frame of the kind we have described both for field theories and particle theories.

We discuss the meaning of this preferred frame and show that the idea is not only 
perfectly consistent, but also fits in with an important tradition regarding the way in which 
new levels of reality (e.g. atoms) are introduced in physics to explain older levels (e.g. 
continuous matter) on a qualitatively new basis. 

12.2 The one-particle Dirac equation

We shall begin with the one-particle Dirac equation and show that it is possible with this 
equation to obtain an ontological interpretation that is invariant in content to a Lorentz 
transformation.

We have already given the essence of this interpretation in chapter 10. To recapitulate 
briefly, it follows from the Dirac equation that there is a conserved current density whose 
time component is positive definite. This is

j=ψ†αψ
j0=ψ†ψ (12.1)

with

 
(12.2)
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We define the velocity as

 
(12.3)

We start with the identity

 (12.4)

This reduces to

 
(12.5)

The left-hand side of this equation is just  and it is evident that the right-hand side 
is positive definite so that |υ|<1.

If we denote the density ρ=j0, we obtain for the conservation equation

 
(12.6)

Therefore the velocity (12.3) may be taken as determining the guidance relation for 
a particle. If we assume a probability density, P=ρ, for any time, then equation (12.6) 
guarantees that it will hold for all time.

As we explained in chapter 10, it is not necessary to have a simple relationship for the 
acceleration analogous to the one in the non-relativistic theory which expresses the latter 
as the sum of two terms, one corresponding to the classical potential and the other to the 
quantum potential. Even without such a relationship the path of the particle is completely 
determined by equation (12.3) and the whole theory will eventually go through by an 
extension of the approach given in chapter 10.

It is evident that this theory is Lorentz invariant in content because the Dirac equation 
is covariant, and because from this it follows that the relationship (12.6) is also covariant. 
It is important, however, to ask what would happen if we assumed, as was done in chapter 
9, that the probability density P was not initially equal to ρ. Could covariance still be 
maintained under these conditions?

To discuss this question, we first note that in chapter 9 we have given two ways in which 
the probability distribution might approach ρ. Firstly, we might have a complex system 
consisting of many particles in interaction, e.g. electrons in a metal. We showed that in 
such a case, the probability P would eventually approach ρ. To be sure, the situation that 
brings about this approach is not covariant. For example, the electrons in the metal will 
determine a process that is uniquely related to the centre of mass frame of the metal. Yet 
once the distribution P=ρ has been brought about, the result will be covariant and will 
remain so. Thus electrons boiling out of the metal and accelerated to high velocities will 
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still have a covariant distribution with P=ρ because this distribution was established before 
they boiled out.

The second way of bringing about the distribution P=ρ is to assume an underlying 
stochastic process. No one has yet found a way to give a coherent description of a covariant 
stochastic process, although attempts have been made (Lehr and Park [1], Fenech and 
Vigier [2]). The principal difficulty is that the probability of a given velocity would have to 
be uniform on a time-like hyperbola. This would mean not only that almost all the particles 
will be going very close to the speed of light, but also that there is no way to normalise the 
probability distribution (essentially because the Lorentz group is not compact).

There is no need, however, to have such a Lorentz invariant stochastic process. Indeed, 
as long as we have a stochastic process that leads to P=ρ in any particular frame, this 
will be enough. For it follows that from then on we will have a theory that will have a 
Lorentz invariant content. Thus, for example, we could introduce equations for osmotic 
and diffusion velocity along the lines of equations (9.38) and (9.39) to give

 
(12.7)

where υ=ψ†αψ/|ψ|2 and the osmotic velocity is evidently  This equation would 
hold only in a certain frame and would evidently imply a non-covariant process of approach 
to equilibrium. Nevertheless along the lines that we have described, it would lead to an 
equilibrium distribution that is Lorentz invariant. This would be enough to bring about 
a covariant ontological interpretation of the one-particle Dirac equation. (The osmotic 
velocity  may be infinite where ρ approaches zero and this would imply 
speeds greater than that of light. We shall however discuss this point in section 12.6 where 
we show that it leads to no inconsistencies.)

12.3 The ontological interpretation of the Dirac equation for a

In chapter 10 we have given the main features of the extension of the ontological 
interpretation for Dirac particles to a many-body system. We begin by summing up 
what was done there. Firstly we define the wave function for the many-body system to 
be  Note that we are, at least for the moment, taking all the 
particles at the same time t. We introduce the operators, αn, which operate only on the four 
indices, in, belonging to the nth particle (similarly for βn). The Dirac equation for the N-body 
system is then

 
(12.8)

where Φ and A represent the electromagnetic potentials. From this it is readily shown that

many-body system
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(12.9)

where in the above we sum over all the indices of all the particles.
Defining the density p(x1…xn…)=|Ψ|2 in the configuration space of all the particles and 

the guidance relation for the velocity of the nth particle, υn,

 (12.10)

we obtain the conservation equation in configuration space

 
(12.11)

If P=ρ initially, it follows that this will hold for all time. Along the lines that we have given 
in previous cases, we can see that the above provides a consistent ontological interpretation 
of the many-body Dirac equation.

This consistency is evident in the particular frame that we have chosen for the 
representation of the beables of the system, which are xn and υn. The question then arises, 
however, as to whether this interpretation has a covariant content, i.e. one that has the same 
meaning in every Lorentz frame. Thus, for example, the many-body Dirac equation (12.8) 
considers all the particles at the same time and it is not immediately evident that one could 
make a Lorentz transformation in which all the particles would be considered at the same 
value of the transformed time  Nor is it evident that the υn defined in 
equation (12.10) would be obtainable from some four vector  And finally one can ask 
what is to be done with the negative energy states. 

Let us first consider the meaning of the negative energy states. This is usually treated 
in terms of fermionic creation and annihilation operators satisfying anticommutating 
relations, which, of course, describe particles that satisfy the exclusion principle. The most 
obvious anticommutating relations for the operators Ψ†(x) and Ψ(x) would be

[Ψ†(x), Ψ(x′)]+=δ(x−x′).    (12.12)

If we Fourier analyse Ψ as

 
(12.13)

this leads to the anticommutation relations
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(12.14)

while all the ak and the  anticommute among themselves.
The state of no particles would be one containing neither particles with positive nor 

negative energy. Therefore it would be possible in general for interactions to produce particles 
with negative as well as positive energies. To avoid this, standard treatments in field theory 
effectively interchange annihilation and creation operators. That is to say they write

 
 

where bk and  are the creation and annihilation operators for the corresponding antipar-
ticles with positive energy, so that we can write 

 
 

In this way we avoid having particles with negative energy.
Although the approach described above is most convenient for field theory, it must 

be emphasised that it is equivalent in all its results to the procedure adopted by Dirac, 
who originally worked with a purely particle point of view. What he proposed was that 
in the vacuum, all the negative energy states were filled. Because the particles satisfy the 
exclusion principle, the transition of particles to the negative energy states could therefore 
never occur. However, when a particle went to a positive energy state, it would leave a hole 
that acted like an antiparticle. So in effect a positive and negative pair would be created in 
such a process (more or less as happens in a semi-conductor where likewise a transition 
from one band to another creates a pair of positive and negative carriers).

In order that the exclusion principle be satisfied, it is necessary that the wave function 
for all the particles be antisymmetric. Once this condition is satisfied, then Dirac’s approach 
and the usual approach in terms of fermionic operators are essentially equivalent. (Indeed 
the two differ only by a unitary transformation in which the ak− are replaced by  and the 

 by bk.)
It is important to start with the Dirac approach if we wish to obtain an ontological 

interpretation of the Dirac equation, because fermionic fields cannot be given an 
ontological interpretation in terms of beables in the same way that it is possible with boson 
fields. For the fermionic field operators have only two possible states and cannot be put 
in correspondence with field beables that would change continuously. (On the other hand 
bosonic operators with their infinity of states can be represented in terms of continuous 
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fields.) All that we have to do then is to assume a position xn for each fermionic particle 
and to make the total wave function  antisymmetric. Then, as we 
have already pointed out, provided that we assume the vacuum corresponds to having all 
the negative energy states ‘filled’, we will be able to guarantee that there are no transitions 
to negative energy states. The interpretation we have given here will thus go through in a 
straightforward way.

12.4 Lorentz invariance of the many-body Dirac equation

Let us now go on to consider the question of whether the many-body Dirac equation is 
Lorentz invariant in spite of the fact that it uses a common time for all the particles. To show 
that it is Lorentz invariant we shall begin by making use of the fundamental relationship 
that we have indicated in section 12.3 between the field theoretic formulation for fermions 
and the particle formulation for the case that the total number of particles is well defined. 
We make use of the fact that the field formulation has been shown in standard treatments 
to be invariant not only to Lorentz transformations but also to any change of the space-
like surface on which the initial values of the wave function are given. (For details see 
Schweber [3].) From the equivalence of the field and particle formulations, it will be seen 
to follow that the Dirac many-body equation is also Lorentz invariant.

Let us begin by assuming that the fermionic field contains N particles. The basic 
orthonormal set can be formed from linear combinations of wave functions

 (12.15)

where  is the operator for the creation of a particle at the point xi, and Ψ0 is the wave 
function representing the situation with no particle at any point. The general wave function 
can be written as a liner combination of this orthonormal set

 
(12.16)

Since the operators ψ†(xj) anticommute, it follows that the  are anti-symmetric functions 
of the xj and the indices ij. Indeed, as is well known, the  are just the ordinary antisym-
metric wave functions for the N-particle system.

In terms of the field approach we can write the wave equation as

 
(12.17)

where the Hamiltonian is

 
(12.18)
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This Hamiltonian operates on the creation operators in equation (12.16). However, by 
integration by parts we can bring about an equivalent operation on the  It then follows that

 

(12.19)

Since the operator formalism has been demonstrated to be covariant, it follows that the 
above form of the Dirac equation can be obtained in any frame. As is well known, the 
transformation between frames in field theory is unitary. From this it follows that at least as 
far as probabilities are concerned, the many-body Dirac equation is Lorentz invariant both 
in form and in content.

12.5 The multiple time formalism

Although we have adequately proved the invariance of the Dirac many-body equation, it 
will be instructive to consider an alternative approach through the many-time formalism 
[4] because the latter can provide further insight into meaning of this invariance.

Let us begin by considering the Dirac equation for N particles, each of mass m, which is

 
(12.20)

where

 
(12.21)

When the equation is in this form we can only calculate probabilities for obtaining certain 
results (e.g. the values of the xn) when measurements are made at the same time t. But 
suppose that we wish, for example, to measure the positions of the particles xn at different 
times  The multiple time formalism provides a way of calculating the probability of 
such results.

To do this we begin by postulating the set of N wave equations

 
(12.22)

These equations will all be integrable provided the Hamiltonians HN and HN′ all commute. 
But this will follow provided that the various points  are on a space-like 
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surface, so that they are outside each other’s light cones. In this case one can start with 
χ=χ(x1,…xN, t) with  and integrate the equations (12.22) to obtain

 
 

Bloch has proposed an interpretation for the meaning of χ (see Wentzel [4]). This is that 
|χ|2 gives the net probability density for obtaining all these results together. It must be 
remembered however that Bloch is referring to the usual interpretation and not to our 
interpretation.

To see what Bloch’s interpretation means, suppose that we consider an ordered series of 
times  If, for example, we measure x1 at  then according to the theory 
given in chapter 2, which deals with the usual interpretation, the wave function after the 
measurement of the position of the first particle will ‘collapse’ to

 
 

where  represents the wave function of the measuring apparatus whose wave 
packet centres at ξ1r which corresponds to obtaining the value x1=x1r (where x1r is the 
rth possible result of the measurement). The important thing to notice here is that after 
this measurement, there will be no interference with parts of the wave function initially 
corresponding to values of x1r different from the result actually obtained, x1r. A similar 
description will hold for subsequent measurement of x2, x3, etc. and therefore, as Bloch 
proposed, |χ|2 will give the probability that if x1=x1r in the result of the first measurement, 
then x2=x2s will be the result of the second measurement, and so on.

The consistency of this formalism is further demonstrated by showing that propagation 
through a time Δt is the same as that obtained by propagating each of the individual 
equations (12.22) through  Thus we obtain for the total change of χ

 
 

and this is just what we would obtain from the single time formalism.
Let us now consider Lorentz invariance of this formalism. Each of the equations (12.22) 

is evidently Lorentz invariant. If we simply Lorentz transform each of the equations from 
a wave function χ in which all of the  are equated to a common time, t, we must then, in 
addition, consider each of the particles at a common time t′ such that

 

 

as shown in figure 12.1. It is evident from this that by suitable choices of  we can always 
have a wave function considered at a common transformed time t′. The Lorentz invariance 
of the formalism is thus evident.
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12.6 On the question of Lorentz invariance of the ontological interpretation of 
the Dirac equation

Let us now raise the question as to what extent the ontological interpretation of the many-
body Dirac equation is invariant in content to a Lorentz transformation. To simplify 
the discussion, let us consider a two-body system. In so far as the wave function of the 
combined system can be written as a product  it is clear that the 
velocities (12.10) of the two particles will take the form

 
Figure 12.1: Space-time frames

 

(12.23)

The density in configuration space will be ρa(x1)ρb(x2), where

 
 

and

 
 

The particles thus behave independently, and, from our previous discussion of the one-
particle case, it follows that this system is Lorentz invariant.

If there is a linear combination of wave functions,
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 (12.24)

then, in general, the two systems will cease to be independent. However, for the special 
case in which  does not overlap  the interference terms 
will vanish and the net probability density in the configuration space of the two particles, 
|ψ|2, will divide into two distinct channels of the general kind discussed in chapters 5 and 
6. In this case the particles will be in one of the channels, while the potentially active 
information in the other channel will have no actual effect. It is clear then that once again 
the two particles will be independent.

More generally, however, there will be a nonlocal connection between the two particles, 
as can be seen, for example, from the expression for the probability density in configuration 
space

 

 

and for the current density of the first particle in configuration space

 

(12.26)

with a similar expression for the second particle.
It is clear from the above that the velocities υ1=j1/ρ and υ2=j2/ρ are no longer independent. 

Rather, the velocity of the first particle, for example, will depend on the location of the 
second particle, which may in general be far away. And this, of course, implies the nonlocal 
connection that we have mentioned above. When we go to the non-relativistic limit, this will 
lead, in the way explained in chapter 10, to the Pauli equation, and eventually in the limit 
in which the effects of ‘spin’ can be neglected, we obtain the Schrödinger equation. In the 
latter case, a nonlocal connection in the velocities of the particles implies a nonlocal quantum 
potential that accounts for the mutually related accelerations that are entailed by the guidance 
conditions.

In the limit in which such nonlocal connections can be neglected, it follows from what 
we have said earlier in this section that the theory will be Lorentz invariant. In this way we 
see that what we have in chapter 8 called the manifest world, i.e. the world of ordinary large 
scale classically describable experience, will be invariant. It is in this world that quantum 
properties will have to manifest themselves, whether through measurements or through 
equivalent processes that occur naturally (e.g. as an ion going through a cloud of gas in a 
naturally occurring electric field will produce large scale cascades of charged particles in 
essentially the same way as happens in ion chambers constructed by human beings).

In order to agree with the experimental facts available, it is necessary to show that all 
statistical results of measurement-manifestation processes are Lorentz invariant. In doing 



240 The undivided universe

this, it will be convenient first of all to point out how Lorentz invariance arises in the 
usual interpretation. What happens there is that the wave function undergoes a unitary 
transformation, U, when we go from one Lorentz frame to another (where U depends on 
the Hamiltonian). Therefore operators such as  do not in general commute 
with xn (even though the xn all commute with each other, as do the  In spite of this 
however, because the wave equations are the same in every frame, measurement theory 
will go through in a covariant way.

It has been shown, however, that the ontological interpretation gives the same statistical 
results for all measurement-manifestation processes as does the usual interpretation. This 
means that our interpretation will have a covariant content for all statistical consequences 
of the measurement-manifestation process. But the only quantum experiments that can 
be performed thus far are of this statistical nature. So, in this domain, our ontological 
interpretation is also Lorentz invariant in content. (In chapter 14 we discuss the possibility 
of going beyond the present quantum mechanical statistical results.)

It is evident, however, that from the above discussion, it does not follow that the 
ontological interpretation for an individual system in terms of a particle with a well-defined 
trajectory is a Lorentz invariant concept. Indeed it would be extremely surprising to obtain 
a Lorentz invariant theory of particles that were connected nonlocally. To illustrate the 
typical difficulties involved in this notion, consider two separated particles, A and B, both 
at rest in the laboratory frame as shown in figure 12.2.

If there is a nonlocal connection of the kind implied by our guidance conditions, then 
it follows that, for example, point a and point b instantaneously affect each other. But if 
the theory is covariant, there should be similar instantaneous connections in every Lorentz 
frame. Therefore a and b′ as well as b′ and a′ will also be in such an immediate connection. 
It would then be possible for A acting at a to affect its own past a′ by affecting b′. This 
would evidently imply a paradoxical situation (e.g. as in the case of a person who killed 
his own father before he was conceived and in doing so annihilated himself so that he was 
incapable of carrying out the assumed action).

Of course, until we are able to carry out experiments on individual processes that are 
more accurate than the limits set by the uncertainty principle, it will not be possible to 
use quantum nonlocality for the purpose of sending signals. For as shown in chapter 7, 
in statistical measurements the EPR correlations between distant particles do not make it 
possible for signals to be sent from one particle to another. More generally any attempt to 
send a signal by influencing one of a pair of particles under EPR correlation will encounter 
the difficulties arising from the irreducibly participatory nature of all quantum processes. If 
for example we tried to ‘modulate’ the overall wave function so that it could carry a signal 
in a way similar to what is done by a radio wave, we would find that the whole pattern of 
this wave would be so fragile that its order could change radically in a chaotic and complex 
way. As a result no signal could be carried.
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Figure 12.2: Space-like connections influencing the past

 

Figure 12.3: Trajectory intersection of hyperplane t′=constant

The non-invariance of the guidance relations for the case of nonlocal connection can 
be brought out more explicitly in terms of the multiple time formalism. We begin in the 
laboratory frame (x, t) in which it is legitimate to assume that all processes can be described 
correctly. As shown in figure 12.3, we assume particles with coordinates x1, x2 and x3 
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moving on definite trajectories that intersect the t′=const, hyperplane at a1, a2 and a3. If 
we determine the velocity of each particle independently by the multiple time equations 
(12.22), the results would indeed be relativistically invariant.

But as we have seen in the previous section, this will give us the statistical behaviour of 
a system for which x1 has been measured at  at a later time  and so on. Although 
our results were obtained from measurement theory in the usual interpretation, they will 
still follow in our interpretation. That is to say, after the measurement of x1 is over and 
has yielded a certain result x1r, the subsequent behaviour of x2, x3 etc. will no longer be 
affected by the parts of the wave function corresponding to x1s not equal to x1r (that is for 
positions which are not realised in the actual individual process of interaction with the 
measuring apparatus). Therefore the wave function will not be the right one for calculating 
the guidance relations that actually operate on the particles when no measurements are 
made. For in this latter case the wave packets corresponding to all possible values of x1r 
can come to interfere with the passage of time. Because of nonlocal connections of x1 with 
x2, x3, etc. this will introduce further terms in the guidance relations not contained in the 
multiple time formalism. Therefore the multiple time formalism cannot get us out of the 
difficulties implied by nonlocal connection.

Indeed it is clear that the entire calculation of the particle velocity will be ambiguous 
until we specify the frame in which the nonlocal connections are instantaneous. The 
concept of a particle guided in a nonlocal way will, in general, not be Lorentz invariant. As 
we have already pointed out, one has therefore to assume some definite frame in which the 
connections are to be described as instantaneous, while in other frames they are described 
as working either backwards or forwards in time, although still on a space-like surface (as 
shown in figure 12.2).

If it turns out that the laboratory frame is not the one in which the connections are 
instantaneous, then it might seem at first sight as if the present could affect the past. But 
because the effect is only on a space-like surface, it follows that there will necessarily be a 
frame in which the nonlocal connections act only between points that are at the same time 
in this frame. Briefly, what this means is that there is always a unique frame in which the 
nonlocal connections operate instantaneously. In this frame there is no intrinsic logical 
difficulty about having nonlocal connections. The behaviour of these connections in other 
frames will then always be obtained by transforming these results from the special frame 
in which the connections are instantaneous.

From the above it follows that even though the underlying theory requires a preferred 
frame, all the statistical results of the quantum theory will still be covariant (as will, of 
course, the manifest world of large scale experience). The basic idea behind this is that 
every measurement process is determined by an operator. The covariance of the wave 
equation implies that to any operator O, there is a corresponding operator, O′, which is 
the Lorentz transformation of O. In general, O and O′ do not commute, but this need not 
concern us since we are interested here only in measurement processes that are occurring in 
a particular Lorentz frame. The theory of measurement processes that we have given, along 
with the demonstration that the probability distribution P=ρ is covariant, then ensures 
that the statistical results of these measurement processes will have a Lorentz invariant 
content.
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Various authors have however tried to retain covariance of the underlying theory by 

assuming nonlocal connections that are Lorentz invariant. For example, Droz-Vincent [5], 
and Vigier [6] suggested that for a two-particle system, one would assume that the nonlocal 
connections were instantaneous in their centre of mass frame. Clearly this is a covariant 
notion. But the typical difficulty arises when we consider three or more particles. As we 
pointed out in chapter 11, section 11.2, where we discussed particle alternatives to the 
bosonic field theories, the centre of mass frame of a pair of particles in a many-body system 
is ambiguous, because each particle may be considered in connection with any one of the 
remaining particles in defining such a frame. Even if we consider all the particles of the 
given system regarded as classical, the concept is ambiguous because the latter may always 
interact with yet another system. Thus we do not feel that any overall theory of this kind 
can consistently define a covariant relationship of particles that are nonlocally connected.

To sum up then, we have found that it is necessary to assume a basically non-Lorentz 
invariant theory for the individual particles. Nevertheless this theory becomes Lorentz 
invariant where nonlocal connections can be neglected. From this we conclude that the 
manifest level of ordinary large scale experience will be covariant in its behaviour. We 
have also shown that the statistical laws of the quantum theory are covariant. We emphasise 
again that there is Lorentz invariance in all of the domains of particle theory that have 
thus far been investigated experimentally, but these do not necessarily invalidate our 
assumptions concerning the underlying level in which the order of succession is unique.

12.7 On the Lorentz invariance of the ontological  
interpretation of boson field theories

The question of Lorentz invariance in the ontological interpretation of boson field theories 
is not basically different from that in fermion many-particle theories. To bring out this 
essential similarity, we note that in the fermionic theory, the beables are particle positions 
governed by guidance conditions determined by the wave function (see equation 12.3), 
while in boson theories, the beables are the fields whose movement is governed by guidance 
conditions determined from the wave functional (see equation 11.3). The similarity of the 
two theories can be made even more evident by using the model discussed in chapter 11, 
section 11.1, in which field variables are considered only at a set of discrete, but rather 
densely distributed points in space-time. The field beables then correspond fairly closely 
to the particle beables.

It is clear that as long as we stick to a certain Lorentz frame, this interpretation is coherent. 
But if we try to go from one Lorentz frame to another, we then encounter difficulties similar 
to those met in fermionic particle theories. For as we have already pointed out in chapter 
11, there will in general be nonlocal connections amongst the field beables. And as we have 
seen in this chapter, this means that a consistent description of these connections can be 
obtained only if we assume that there is a unique frame in which they are instantaneous. 
Also, if fermionic and bosonic systems are to interact, it is clearly necessary that this frame 
be the same for both of them.

As was done with fermions, we can show that in the large scale limit of ordinary experience, 
bosonic fields can approach a simple classical behaviour in which nonlocal connections 
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become negligible. We have indeed already shown in chapter 11 that harmonic oscillators 
excited to high quantum numbers can have wave functions (e.g. those corresponding to 
coherent states) in which the fractional fluctuation in the energy of excitation becomes very 
small, so that this energy can be regarded as very nearly well defined. Nevertheless, at the 
same time the total spread in the number of quanta becomes very large. And as Glauber 
[7] has shown, for such a wave function one can define an approximate meaning to the 
phase of an oscillator. Therefore the oscillator can be regarded as moving very nearly in 
a classical orbit. If we then put together all the equivalent oscillators corresponding to the 
Fourier coefficients of the field, we obtain in the large scale limit of ordinary experience 
something that approximates to the behaviour of a classical field. Because interactions that 
exchange a few quanta with the environment have no significant effect on the field as a 
whole, it follows that the latter can be regarded as independently existent. What this means 
is that one can ignore the basic quantum mechanical participation which is involved in a 
measurement, or more generally, in any manifestation in the large scale world of ordinary 
experience, whether this takes place naturally or is induced by human beings. (Chew and 
Stapp [8] have in fact given a more detailed treatment of this question for the case of 
massless fields, but they start from the point of view of the S-matrix rather than the usual 
quantum mechanics.)

As happens with fermions, this approximately independent part of the field in the 
manifest world will also have a negligible contribution from nonlocal quantum connections 
(essentially because the super-quantum potential is negligible for such high quantum 
states). However, it must be recalled that this will generally hold only for massless bosons. 
However, with massive bosons the energies required for such a classical situation are so 
high that these do not play a significant role in the manifest world of ordinary experience.

We can then go on to consider processes in which the quantum laws become important 
(e.g. scattering, ionisation, etc.) but as we have shown throughout this book, the statistical 
distribution of manifestations of these processes in the ordinary large scale world of 
experience will be the same in our interpretation as in the usual interpretations. Since the 
latter is Lorentz invariant, it follows that our approach will also lead to Lorentz invariant 
results for all statistical measurement-manifestation processes.

As with fermions, it is only in the individual processes in which the quantum laws are 
important that the theory ceases to be covariant and requires the assumption of a unique 
Lorentz frame. (It is interesting that Chew and Stapp [8] also have such a frame which is 
implied by their concept of a unique universal time.)

12.8 On the meaning of non-Lorentz invariance of processes  
involving individual beables

As we have seen in the previous section, our ontological interpretation leads to Lorentz 
invariant results in the manifest world of ordinary experience and also in the statistical 
predictions of quantum theory. These two fields cover all the experimental knowledge that 
we have so far. It is only in connection with individual processes involving the beables that 
Lorentz invariance may break down. But as long as the quantum theory is valid, there is no 
way to demonstrate this non-Lorentz invariance experimentally.
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Nevertheless, it is understandable that there may be strong objections to giving up 

Lorentz invariance even at the level of individual processes involving the beables. For 
relativity theory (both special and general) has had a very wide range of successful 
applications. Moreover, the beauty and symmetry of its mathematical form have not only 
been attractive to physicists, but have led them to have great confidence in the ultimate 
truth of the theory.

We have to be careful, however, not to assume that a theory has an absolute and 
unlimited validity just because it has agreed with a very wide range of experiments and 
because its form is aesthetically pleasing. From these reasons it does not follow that the 
theory of relativity is an absolute truth. In fact there is evidently no way to prove that any 
theory whatsoever is an absolute truth no matter how well verified it may be. Of course, 
as Popper [9] has pointed out, a good scientific theory should, at least in principle, be 
refutable and the theory of relativity clearly satisfies this requirement. But if we tacitly 
proceed in such a way as to take this theory as unchallengeable, we are, in effect, denying 
the applicability of Popper’s requirement. However, such challenges may take many 
forms not only those involving experimental tests, but also those involving theoretical 
criticisms of the consistency of the theory in question with itself and with other generally 
accepted theories. We could then say that our ontological interpretation helps bring out a 
fundamental inconsistency between relativity and quantum theory, centred on the question 
of nonlocality. (Recall here that other interpretations of the quantum theory also imply 
nonlocal-ity, though not in such a clear way, as shown in chapter 7 and as we shall show in 
further detail in chapter 13.)

What this suggests is that either we accept nonlocality, in which case relativity is not 
fully adequate in the quantum domain, or we reject non-locality, in which case quantum 
theory is not fully adequate in the relativistic domain. Of course, it is also possible that both 
theories may break down somewhere in the domain in which they meet. We are therefore 
led to consider the possibility that either relativity or the quantum theory, or both, may 
prove to be false when extended beyond certain domains. In chapter 14 we shall discuss 
the possibility that it is the quantum theory that breaks down (though we shall not enquire 
specifically into whether the new theory would be compatible with relativity). In the 
present chapter we are investigating the possibility that it is special relativity that breaks 
down, while quantum mechanics remains valid.

The most essential feature of special relativity is Lorentz invariance. We already know 
that Lorentz invariance must be limited at large distances where the effects of curvature 
are appreciable. We can also give an argument showing that Lorentz invariance should 
be limited at short distances (probably at the order of the Planck length). To do this let us 
consider a vector, υμ, of ordinary length and regard it as made up of many smaller vectors, 

 which are on a straight line such that

 
 

Suppose that we make a Lorentz transformation. Strictly speaking this cannot be defined 
without giving the metric tensor gμv. But at very short distances this tensor has large quantum 
fluctuations and does not reduce to its simple diagonal form. The Lorentz transformation, 

 will then give us
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It is clear that what was a simple line vector is transformed into a rather foggy distribution 
of constituent elements which are not well defined. So the whole idea of a simple Lorentz 
transformation of one line into another breaks down. The idea of Lorentz invariance only 
becomes relevant over intermediate distances for which the fluctuations of gμv will average 
out to something relatively small, implying that gμv can be taken as effectively constant.

All of this suggests that the Lorentz group may not be as fundamental as we have 
generally assumed. If it is not valid in the domain of very large distances and it is not valid 
in the domain of very small distances, it may also cease to be valid in yet other domains. 
The analysis given in this chapter suggests that even at intermediate distances it may cease 
to be valid for individual processes involving the beables wherever quantum nonlocality 
is important.

We are thus led to assume something similar to a unique universal frame, or more 
accurately, to a universal order of succession. In certain ways such a theory would be 
reminiscent of the Lorentz-type ether theory within which there were large scale objects 
with structures undergoing processes that would change with velocity in such a way as to 
bring about Lorentz invariance in terms of frames defined through these structures.

An explanation of this kind of theory is given in Bohm [10]. Here one appeals to the 
notion that matter is constituted of atoms consisting of negatively charged electrons and 
positively charged nuclei. The forces between atoms, responsible for binding them into 
molecules, and ultimately into macroscopic solid objects, are assumed to originate in 
the attractive forces between electrons and the nuclei, and the repulsive forces between 
electron and electrons as well as between nuclei and nuclei. Consider, for example, a crystal 
lattice. The places where the electrical forces come to a balance would then determine the 
distance, d, between the neighbouring atoms. Therefore, in the last analysis the size of such 
a crystal containing a specified number of atomic steps in any given direction is determined 
in this way.

Lorentz assumed that the electrical forces were states of stress and strain in the ether. 
From Maxwell’s equations, assumed to hold in the reference frame in which the ether 
was at rest, it was possible to calculate the electromagnetic field surrounding the charge 
particle. For a particle at rest in the ether, it followed that this field was derivable from a 
potential,  which was a spherically symmetric function of the distance r from the charge, 
i.e.  where q is the charge of the particle. When a similar calculation was performed 
for a charge moving through the ether, it was found that the force field was no longer 
spherically symmetric. Rather, its symmetry became that of an ellipsoid of revolution, 
having unchanged diameters in the directions perpendicular to the velocity, but shortened 
in the direction of motion by the factor  This shortening is evidently an effect 
of the movement of the electron through the ether.

Because the electrical potential due to all the atoms in the crystal is just the sum of 
the potentials due to each particle out of which it is constituted, it follows that the whole 
pattern of equipotentials is contracted in the direction of motion and left unaltered in the 
perpendicular directions, in just the same way as happens with a single electron. Now the 
equilibrium positions of the atoms are at points of minimum potential. It follows then that 
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when the pattern of equipotentials is contracted in the direction of motion, there will be 
a corresponding contraction of the whole crystal in the same direction. A measuring rod 
made of such a crystal will therefore be shortened by the factor  But if the rod 
is perpendicular to the direction of motion its length will not be altered.

In the reference given above, it is also shown that because the field intensity is increased 
by the contraction, it follows that the electromagnetic inertia of a charged particle is also 
increased. The net result is that any physical process involving the crystal (e.g. vibrations) 
is slowed down by the factor  Therefore if oscillatory processes are used to 
measure time, we obtain the well-known formula

 

 

where T0 is the period for a crystal at rest in the ether and T is the period for a crystal in 
motion through the ether. Finally it can be shown that two such processes equivalent to 
clocks will get out of phase when they are separated.

When all three of these effects are put together, we obtain the Lorentz transformation 
between length and time as measured by a moving system and those measured by a system 
at rest in the ether. It follows from this sort of argument that Lorentz invariance is perfectly 
compatible with the assumption of an absolute frame such as that of the ether. Therefore 
there is no way from the experimental facts alone to prove there is no absolute frame 
determining a universal order of succession.

However, for various reasons which were mainly either aesthetic or philosophical, 
such a notion of a universal time order was rejected early in the twentieth century. For 
example, the ether theories available at the time assumed very complex and implausible 
mechanisms to explain the behaviour of fields and physicists found these assumptions 
unattractive. In addition, the ether theory in the form presented by Lorentz was such that it 
was impossible to detect its presence by any experiments that could be contemplated at that 
time. Therefore at the very least such theories were felt not to be very relevant, while by 
many they were regarded as violating a philosophical principle that was widely accepted in 
the positivistic atmosphere of the time, i.e. that all concepts contained in any theory ought 
to be observable.

Nevertheless physics developed in such a way that some features of the ether theory 
were retained. Thus Einstein [11] in his general theory attributed properties to empty space 
in the form of the gravitational tensor, gμv. Einstein therefore later came to say that his 
field theories were theories of a relativistic ether that did not involve detailed descriptions 
of any mechanisms. It was essential for Einstein that such theories should be local and 
thus he was able to retain Lorentz invariance, at least in regions that were not too large 
(strictly speaking only in infinitesimal domains described by tangent spaces). But now we 
have additional reasons to limit Lorentz invariance implying that it does not hold even in 
the small. And nonlocality further suggests that even in intermediate domains, Lorentz 
invariance no longer holds for individual processes involving the beables, but is valid only 
in the manifest domain and in statistical applications of the quantum theory.
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The notion of having a domain in which all phenomena become essentially independent 
of the preferred frame is one that is actually quite familiar in other contexts. For example, 
consider a cubic crystal which evidently determines a preferred frame, yet large scale 
properties such as sound waves of long wavelength are isotropic and show essentially no 
trace of the frame. Similarly we may get Lorentz invariance for long waves even when 
there is a structure determining a preferred frame.

We have used the ether theory to illustrate how it is possible to retain an absolute time 
order and yet retain Lorentz invariance. But the same result can be obtained in a much more 
general way without detailed and implausible assumptions about a material space-filling 
substratum of the kind to which Einstein objected. For example, one could suppose that in 
addition to the known types of field there was a new kind of field which would determine 
a space-like surface along which nonlocal effects would be propagated instantaneously. At 
present we can say very little about this field, but one could surmise that this space-like 
surface would be close to a hyperplane of constant time as determined in a certain Lorentz 
frame. A good candidate for such a frame could be obtained by considering at each point 
in space-time, the line connecting it to the presumed origin of the universe. This would 
determine a unique time order for the neighbourhood of that point around which one would 
expect isotropic properties in space. We may plausibly conjecture that this frame would be 
the one in which the 3K background radiation in space has an isotropic distribution.

This unique frame would not only make possible a coherent account of nonlocal 
connections, but could also be significant in other ways. For example in this frame there 
will evidently be no limit to the possible speed of the particles. Thus, in the stochastic form 
of the ontological interpretation of the Dirac equation it is possible, as we have seen in 
connection with equation (12.7), to have random movements that are faster than light. In the 
unique frame that we have introduced, there evidently is no reason why such movements 
should not take place. (Recall however that a non-Lorentz invariant process of this kind can 
give a Lorentz invariant equilibrium distribution j=ψ†αψ, j0=ψ†ψ.)

This brings us to the second objection, i.e. that the absolute frame is unobservable. 
Certainly if we restrict ourselves to the assumptions that have been made thus far, this 
would be a valid criticism. However, in terms of our ontological approach it is possible 
to alter these assumptions in such a way that the absolute frame would be observable, 
while negligible changes would be produced in the domain of experiments that have been 
possible thus far.

A great many such assumptions are possible, but we shall limit ourselves here to a simple 
illustration. Our ontological approach allows us, for example, to consider the possibility 
that the current quantum mechanics is an approximation to a deeper theory (as we shall 
explain in more detail in chapter 14). Let us assume then that the long range connections 
of distant systems are not truly nonlocal, as is implied by the quantum theory, but that they 
are actually carried in the preferred frame at a speed that is finite, but very much greater 
than that of light. For measurements made at levels of accuracy thus far available, the 
results will be very close to those predicted by the present quantum theory. But if we can 
make measurements in periods shorter than those required for the transmission of quantum 
connections between particles, the correlations predicted by quantum theory will vanish. 
In effect we would thus be explaining quantum nonlocality as an outcome of a deeper kind 
of non-Lorentz invariant locality. This however is relevant only in a domain beyond that in 
which current quantum theory is adequate.
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If we consider such modifications of the theory, it then becomes possible to contemplate 

an experimental test that would reveal the preferred frame. In essence this test would 
consist of doing an EPR experiment in which the relative time of detection of the two 
particles was extremely accurately determined. In principle the Bell inequality would then 
no longer be violated for there would be no time for the disturbance of one particle to 
propagate to the other before the measurement was made on it. And from this it follows 
that the latter particle would no longer go into a corresponding state of close correlation 
with the first one. Of course this will require a measurement of extremely high accuracy 
because the speed of transmission of the quantum connection is assumed to be very much 
greater than that of light. It is clear that the accuracy required is far beyond that of the 
Aspect experiment [12].

In certain ways this test is reminiscent of the Michelson-Morley experiment, but 
it differs in the crucial respect that what is at issue here is not the measurement of the 
speed of light, but rather a measurement of the immensely greater speed of propagation of 
our assumed quantum connection of distant particles. Nevertheless as in the Michelson-
Morley experiment, we would have to take into account the speed of the earth relative to 
the preferred frame. Thus one would have to make measurements in different directions 
and at different times. If one detected a change between these measurements, one would be 
able to demonstrate the existence of a preferred frame thus making the latter in principle 
observable.

However, if such changes were found, this would indicate a failure of both quantum 
mechanics and relativity, which would be much more significant than the mere observation 
of the speed of the preferred frame. The meaning of such a result would be that we can 
eliminate quantum nonlocality provided that we assume a deeper level of reality in which 
the basic laws are neither those of quantum theory nor of relativity (which latter come out 
as suitable limiting cases and approximations).

Of course, we cannot at present say any more about what these experiments are that 
could falsify quantum mechanics and relativity. To say more we would have to develop 
our ideas in greater detail. We may give here the analogy of the atomic theory which was 
originally proposed in ancient Greece by Democritus about 2500 years ago. At that time 
there was very little to guide assumptions about the atoms (e.g. it was proposed that they 
were held together by ‘hooks’ and that there were atoms of all sorts, such as atoms of 
intelligence, etc.). In any case it turns out that the experiments available at the time were 
much too crude to have given any significant information about atoms. It took 2000 years 
for ideas and experiments to develop far enough to permit some progress in this regard. 
Nevertheless the idea of atoms was relevant during all this time. What they indicated was 
that continuity at the large scale could be regarded as an appearance underlying which 
was the assumed discrete atomic reality. In any domain in which the notion of continuity 
was adequate atoms could not be observed. However, it was not assumed that atoms were 
intrinsically unobservable. Indeed the very notion of the atomic theory helped people to 
be alert to the fact that there might be observable consequences on the large scale which 
could be explained through these atoms and some of which would not be compatible with 
the assumption of continuity. Such consequences would provide observable evidence of 
the atomic constitution of matter.
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Similarly with regard to the special frame implied by ‘nonlocal’ quantum connections 
and the deeper fields that would propagate these connections locally, we do not propose 
that these are intrinsically unobservable. We merely say that in the statistical and manifest 
domain in which the current quantum theory and relativity are valid, these new properties 
cannot be observed. Just as the observation of atoms became possible where continuity 
broke down, so the observation of the new properties would become possible where 
quantum theory and relativity break down. But of course it may take some time before we 
are able to pursue this matter experimentally (and hopefully fewer than 2000 years!).

12.9 References

1.  W.J.Lehr and J.L.Park, J. Math. Phys. 18, 1235–1240 (1977).

2.  C.Fenech and J-P.Vigier, C.R.Acad. Sc. Paris 293, 249–252 (1981).

3.   S.S.Schweber, An Introduction to Relativistic Quantum Field Theory, Harper and Row, New 
York, 1961.

4.  G.Wentzel, Quantum Theory of Fields, Interscience, New York, 1949, 138–152.

5.  P.Droz-Vincent, Phys. Rev. 19D, 702–706 (1979).

6.   J-P.Vigier, ‘Nonlocal Quantum Potential Interpretations of Relativistic Action at a Distance in 
Many-body Problems’, in Open Questions in Quantum Physics, ed. G.Tarozzi and A.van der 
Merwe, Reidel, Dordrecht, 1985.

7.  R.J.Glauber, Phys. Rev. 130, 2529, and 131, 2766 (1963).

8.  G.Chew and H.P.Stapp, Found. Phys. 18, 809–831 (1988).

9.  K.R.Popper, The Logic of Scientific Discovery, Hutchinson, London, 1968.

10. D.Bohm, The Special Theory of Relativity, Addison-Wesley, New York 1989.

11.  A.Einstein, in Scientific Papers Presented to M. Born on his retirement, Oliver and Boyd, 
London, 1953.

12.  A.Aspect, J.Dalibard and G.Roger, Phys. Rev. Lett. 44, 1804–1807 (1982).



 Chapter 13  
On the many-worlds interpretation

13.1 Introduction

Over a period of time there have developed a number of other ontological interpretations 
of the quantum theory. In the next chapter we shall discuss some of these, but here we 
shall give a more detailed account of one of these which generally goes by the name of the 
many-worlds interpretation. We are giving this interpretation special attention because it 
has come to be fairly widely accepted, especially by those who work in general relativity 
and cosmology and who therefore feel a need to regard the universe as existing in itself 
whether observed or not.

We must emphasise from the very outset, however, that there is no single generally 
accepted version of the many-worlds interpretation. Indeed this interpretation has been 
constantly developing as a result of attempts to clarify its meaning and to remove what are 
perceived as its inadequacies. In this process a great many ideas have been explored which 
do not fully agree with each other, and it seems that, as yet, there is no final version of this 
interpretation that is accepted by all of its protagonists. (For a comprehensive account of 
this development see Ben-Dov [1]. Further detailed discussions will be found in Ballentine 
[2], Bell [3], Cooper and van Vechten [4], d’Espagnat [5], Primas [6], Stapp [7], Zeh [8].) 
The key difficulty stems from the fact that, as we shall see, the two main protagonists of this 
interpretation, Everett [9] and DeWitt [10], differ significantly in their basic formulations, 
and from this difference further divisions arise from those who have adopted various 
approaches to deal with the difficulties that these two did not resolve. 

13.2 Everett’s approach to the many-worlds interpretation

We shall begin with a discussion of Everett’s approach to the many-worlds interpretation 
[9], which emphasises the inclusion of observers as purely physical systems within the 
theory. It seems that in doing this Everett intends to deny dualistic notions in which 
mind, for example, might be regarded as a kind of spiritual reality beyond that of the 
material universe and separate from it. (This denial would also include Wigner’s notion of 
a collapse of the wave function as produced by the interaction between matter and such a 
mind [11].)

Everett effectively assumes that the universe as a whole including all observers exists 
objectively and is described completely by a vector in Hilbert space. Within this universe 
he wants to attribute subjective states to the observers which are in perfect correspondence 
with some aspects of the material universe and therefore of Hilbert space. (This sort of idea 
has been widely called psycho-physical parallelism.) He feels that “it will suffice for his 
purposes that observers possess memories, i.e. parts of a relatively permanent nature whose 
states are in correspondence with the past experiences of the observer” [12]. What this 
means is that, as in a computer whose memories are contained in the state of a disc, some 
aspect of the physical state of the observer, presumably within his brain, serves as the basis 
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of his memories. Deductions can then in principle be made about the subjective experience 
of the observer by examining the contents of the memory.

Everett proposes that we can extend this model of an observer by considering him to 
behave like an automatic machine possessing sensory apparatus coupled to registering 
devices capable of recording past sensory data as well as machine configurations. He 
further supposes that the present actions of the machine are determined, not only by its 
present sensory data, but by the content of its memory as well. Such a machine will be 
capable of performing a sequence of observations (measurements), and furthermore it will 
be able to determine its future behaviour on the basis of past results. Everett feels that for 
such a machine we are justified in using phrases such as “the machine has perceived A” or 
“the machine is aware of A” if the occurrence of A is recorded in its memory.

We can further illustrate Everett’s ideas in terms of the example of the measurement 
of the spin of a particle. In treating this question, Everett makes use of the von Neumann 
theory of measurement which is, of course, also what we have used in our own approach. 
If the initial wave function of the spin is

 (13.1)

and the initial wave function of the ‘pointer’ of the apparatus is a wave packet  
then after the measurement interaction is over, the combined system is left with the wave 
function

 (13.2)

where  and  are wave packets corresponding respectively to positive and negative 
results of the spin measurement. The essential further step of Everett is to introduce wave 
functions χ+(M) and χ−(M), where χ+ and χ− represent states of the brain (or computer) that 
correspond respectively to memories of positive and negative results of this measurement. 
The overall wave function is then

 (13.3)

In equation (13.2) we had a ‘quantum state’ in which the spin and the observing apparatus 
were entangled in the sense suggested by Schrödinger. Similarly equation (13.3) describes 
a state in which the memory within the observer has further been entangled in a similar 
way. Therefore in a fundamental sense the observer does not have a definite memory of 
what is the outcome of the measurement (unless either α or β is zero).

In order to give the memory a definite state, we would have to have another observation 
in which the content of this memory was observed. But this would introduce yet another 
memory of the second observer and the same difficulty would be repeated at one stage 
removed. It is clear therefore that if we add no further concepts to the quantum theory (e.g. 
such as well-defined particle positions as we have done and if we do not allow collapse) 
then there is no way in what Everett has said thus far, to describe the fact that a definite 
result is actually obtained in each case.
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In order to proceed further, some additional assumptions are evidently needed. Everett 
does not state these assumptions clearly and indeed puts them in such a tacit way that 
one can readily fail to notice them. However, his essential assumption is implicit in the 
statement given on page 68 of reference [12]. We shall give here a paraphrase of this 
statement which we feel brings out more directly what we think that Everett wants to say.

In order to avoid the need for bringing about a definite result for the measurement by 
means of a collapse of the wave function in equation (13.3), Everett assumes that each 
part of this wave function corresponds to a definite state of awareness of the content of the 
observer’s memory. He says that in one sense, there is only one total awareness belonging 
to such an observer. Nevertheless he says that (for the case of spin measurement) this single 
total awareness simultaneously can be regarded as two-fold, and that each of the two partial 
awarenesses is not aware of the other (nor of course of the whole).

It is evident that in a series of measurements, the number of partial awarenesses must 
multiply indefinitely. There are correspondingly many possible branches consisting of such 
sequences of partial awarenesses. He assumes that one of these branches represents the 
experience of a particular person. The other branches do not represent merely possible 
experiences that this person might have had (as they would, for example, in a corresponding 
treatment in terms of our own interpretation). Rather they represent distinctly different 
sequences of experiments which are actually recorded in other awarenesses similar to, but 
different from, this particular one. We emphasise again that all these different sequences of 
awareness are not aware of each other, nor of the whole.

Everett assumes that the whole universe including all observers exists objectively and is 
described, as we have already pointed out, completely and perfectly by a vector in Hilbert 
space. One may explain what this means loosely by saying that in some sense the universe 
is regarded as a multi-dimensional reality. But what Everett is doing, is to make a theory 
that relates the universe to various points of view that are contained within it. What we 
experience of the universe is a single subsequence of these points of view. Or, as Squires 
[13] has put it, what we are dealing with is not a many-universe theory, but a theory of one 
universe with many viewpoints. Each point of view establishes a relationship between a 
state of awareness and the state of some other part of the universe containing the observing 
instrument and the observed object.

The existence of this sort of relationship has been described by Everett as a relative state 
of the system corresponding to a particular state of the observer (or more accurately, to the 
state of his awareness). Everett and those who follow him seem to regard this notion of 
relative state as a fundamentally new concept comparable perhaps to Einstein’s regarding 
the meaning of a position coordinate as being relative to some material system which 
serves as a frame of reference. Thus in Everett’s language we can say that any part of the 
total vector in Hilbert space has a perceptible meaning only in relationship to ‘frames’ 
constituted of the memory of the observer. As there are many permissible coordinate frames 
in relativity so there are many observer ‘frames’ in quantum theory.

As an example of Everett’s interpretation, let us consider again equation (13.3). In this 
case the wave function of a partial awareness corresponding to a state of memory of spin 

 will be multiplied by wave functions describing the state of the apparatus and of the 
spin itself also corresponding to spin  From there on this memory will develop further 
awarenesses which fit in with this state. It will however not be aware of the develop-ment 
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of other components of the Hilbert space vector corresponding to the observing instrument 
and observed object. So on one branch the awareness is as if the spin had ‘collapsed’ to  

Everett gives some arguments aiming to show the consistency of this approach. For 
example, if a second observer interacts with this system after the first observation, the 
overall wave function will become

 

 

where y1 and y2 represent the coordinates of the first and second apparatuses respectively, 
while M1 and M2 represent the memories of the corresponding observers. From Everett’s 
assumption, it follows that the memories of the two observers, the states of their apparatuses, 
and the value of the spin are completely correlated. Therefore if, for example, the first 
observer remembers spin  this means not only that the spin will act as if it were  
in all his subsequent experiences, but that the second observer will also remember the 
spin was  and experience it as such from then on. In this way Everett explains how 
different observers can come to agree about the implications of their observations. Everett 
gives further arguments aiming to show in more detail how all the observed results of the 
quantum theory would follow from analyses of this nature.

It is implicit in Everett’s approach (and as we shall see, this is made explicit in DeWitt’s 
approach [10]) that the main purpose of this interpretation is to introduce the minimum 
number of concepts into the theory (for example, Everett would regard our notion of 
particle variables as further assumptions that are not needed).

It seems to be especially important for Everett to put all the concepts in his theory into 
correspondence with the basic mathematical structure of the quantum theory, i.e. in terms 
of Hilbert space. Thus he not only assumes that the physical universe can be described 
completely in terms of Hilbert space, but he seems to imply that the same is true for mind, 
which he regards as being in essence just awareness and memory as he has defined them. It 
must be emphasised however that this in itself is a highly speculative assumption with very 
little evidence behind it. Everyone agrees that we know very little about mind or conscious 
awareness, but many would claim that it must include much more than just memory. Even 
if we accept the as yet unproven assumption that memory can be explained in the way 
that Everett does, it does not follow that this could be done for the whole of mind which 
includes attention, sensitivity to incoherence, all sorts of subtle feeling and thoughts and 
creative imagination as well as much more. We will discuss this in more detail in chapter 
15, where we, too, consider the possibility of including the observer in our overall view of 
the universe. However, we feel that the entire framework of the current quantum theory is 
too limited to do this properly and we propose extensions of the theory that might make a 
more coherent account of the observer possible.

Perhaps we could put Everett’s hypothesis about the mind into a more favourable light 
by regarding it as just a convenient simplifying assumption that makes it possible for him 
to get on with the interpretation of the quantum theory. But even if we do this, we find that 
there is a further speculative hypothesis of a more physical nature. This is that it is possible 
to put some quality, such as awareness, into a precise and accurate correspondence with 
some part or component of the total vector in Hilbert space. Thus for example, returning to 
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equation (13.3), it would be consistent to say that the memory is well defined when either 
α=0 or β=0. For in these cases, the memory would be determined by an eigenvector of 
what may be called a memory operator. Otherwise the memory has to be ambiguous, just as 
other properties, such as momentum and position, have to be ambiguous when the Hilbert 
space vector representing the state of the system is not an eigenvector of the corresponding 
operators. But Everett is further assuming that there is a property called awareness (which 
he regards as essentially physical) that can be put into accurate correspondence with some 
part of the total Hilbert space vector, even when the latter is not an eigenvector of the 
memory. If a similar statement were made about an ordinary physical quantity, this would 
imply a violation of the uncertainty principle. Or to put it differently, Everett is assuming 
that the mind can be aware of its own state of memory without measuring the latter, 
therefore without disturbing the latter, and hence without introducing any ambiguity. It is 
clear then that Everett has assumed a kind of property going far beyond what is allowed 
in the ordinary quantum mechanics. In effect he has introduced a basically speculative 
theory of mind, along with an equally speculative theory as to how this can be related to a 
component of a total vector in Hilbert space.

Everett’s approach may well be interesting to pursue further, but it should not be 
presented as having a smaller number of hypotheses than other interpretations. Even if we 
do not object to the assumption of a large number of awarenesses undetectable to us or to 
each other, we must still notice that we are introducing large and unverifiable assumptions 
about mind and attributing new properties to Hilbert space which go beyond those which 
follow from ordinary quantum mechanics.

If we accept Everett’s approach in the above spirit, we can then go on to ask whether 
it is consistent in full detail and whether it deals adequately with all the problems raised 
in such an approach. We shall in the subsequent sections outline briefly what are the main 
questions involved and what are the difficulties that arise in doing this.

13.3 Comparison of Everett’s approach to that of DeWitt

In this section we shall develop DeWitt’s approach to the many-worlds interpretation and 
compare it with that of Everett. In doing this we shall see that there are some very important 
differences between these two approaches. However, the fact that these differences exist 
appears not to be widely known or recognised, and indeed many authors including DeWitt 
himself essentially identify the two. The fact that both are commonly given the same name 
(though Everett did not use the term ‘many-worlds’) helps further to draw attention away 
from the importance of these differences.

DeWitt’s motivation for his approach is clearly stated in his paper [10]. He felt dissatisfied 
with all the ‘metaphysical’ assumptions contained in previously available interpretations. 
He then proposed that we “forget all these” and begin afresh [14]. In particular his intentions 
were stated as the following:

1.   To take the mathematical formalism of quantum mechanics as it stands without 
adding anything to it.

2.   To deny the existence of a separate classical reality.

3.   To assert that the state vector never collapses.
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He then asserts that it is possible to achieve these intentions and that this was proved by 
Everett [9] with the encouragement of Wheeler [15] and that this has subsequently been 
elaborated by Graham [16]. As with Everett, DeWitt starts with the assumption that the 
mathematical concept of Hilbert space provides the whole of the basic conceptual structure 
underlying quantum theory. He then says that only one additional postulate is needed to 
give meaning to the mathematics, namely, the postulate of complexity: “The world must 
be sufficiently complicated that it can be decomposed into systems and apparatuses” 
[14]. From this it follows that “the mathematical formalism of the quantum theory is 
capable of yielding its own interpretation” (and all this without external metaphysics or 
mathematics).

DeWitt evidently agrees with the implication of Everett’s approach in assuming that the 
universe is faithfully represented by a vector in Hilbert space. But of course, as he pointed 
out, this vector must be immensely more complex than the sort that appears in equation 
(13.3). DeWitt then asserts that the universe itself is splitting into a stupendous number 
of branches, all resulting from the measurement-like interactions between its myriads of 
components. Such interactions take place, not only in measurement, but also in natural 
processes of all kinds which likewise bring about a continual splitting of the universe.

Here we encounter a serious difficulty. For DeWitt clearly attributes his theory to Everett 
in a number of places. Yet as we have seen there is no mention of splitting universes in 
Everett’s work. Rather there is one universe with many awarenesses that are not aware of 
each other. To be sure Everett includes memory which is the content of these awarenesses 
as part of the total universe. Nevertheless he specifically requires that there be relatively 
permanent memories without which he could not formulate his notion of awareness. 
Of course, memory implies a very complex structure, but not every complex structure 
is a memory. So at the very least, DeWitt should have said that Everett requires a kind 
of complexity that would provide the basis of memory, e.g. a brain or at least a super 
computer (as indeed we have seen from Everett’s comparison of awareness to the function 
of such a machine). But even this would not be enough; Everett also says that no very 
significant change takes place when an observer becomes aware of a certain result. It is 
not the universe that splits, but it is just awareness as a whole that divides into many parts 
that are not aware of each other. We repeat again what Squires [13] has said, i.e. it is not 
a theory of many universes, but a theory of many viewpoints of one universe. Everett’s 
aim is thus not mainly to explain the universe, but rather to explain our perceptions of the 
universe.

Everett revealed his attitude to this question in commenting on some views on the 
quantum theory expressed by Einstein [17]. In the von Neumann interpretation, observation 
induces a Collapse’ of the wave function that may affect the whole universe. Einstein 
objected to that as implausible and unsatisfactory. At another time Einstein put this feeling 
colourfully by saying that he could not believe that a mouse could bring about drastic 
changes in the universe by simply looking at it. In answer to this, Everett [18] says that 
from the standpoint of his theory, “it is not so much the system that is affected by an 
observation as it is the observer who becomes correlated to the system”. Further along he 
states that “observation…simply correlates the observer to the system”. Furthermore he 
adds “Only the observer’s state has changed, to become correlated…with the system. The 
mouse does not affect the universe—only the mouse is affected” [19].



On the many-worlds interpretation 257

It is clear from the above that Everett did not contemplate the splitting of the universe. It 
follows then that there is a fundamental difference between the basic assumptions held by 
the two leading protagonists of the ‘many-worlds’ approach. Indeed Everett’s view should 
not even be called the many-worlds interpretation but rather, as Albert and Loewer [20] 
have suggested, the many-minds interpretation, a view which we discuss later. 

The key difference between DeWitt’s approach and that of Everett is that DeWitt’s 
theory is purely objective, while Everett’s theory depends crucially on the inclusion of the 
subjective experiences of the observer (which are however explained objectively as being 
in correspondence with parts of the total Hilbert space vector). For DeWitt, the universe 
actually splits as might happen to material objects. This assumption creates a number of 
problems. Firstly we can ask just when does it split. Thus for example, while the spin is 
interacting with the measuring apparatus as described in equation(13.3), the wave packets 
corresponding to the two possible results begin by overlapping. In principle some overlap 
may persist for a long way even though this may be small. What is it that determines when 
two overlapping wave packets, originally in one universe, suddenly become two non-
overlapping wave packets in separate universes? Indeed unless the measuring apparatus is 
complex enough to make possible a distinct classical-like result, the universes should never 
split, as the two wave packets could again come to interfere in the way we have described 
in chapters 6 and 7. But once the universe has split, it seems that such interferences would 
no longer be possible. In the usual approach to the quantum theory (as well as in our 
approach) it is always, in principle, possible for such interference to occur again.

One usually appeals to some feature such as the complex and chaotic phase relations 
of the wave function to make such interference unlikely to have significant effects (for 
example see Bohm [21]). From DeWitt’s emphasis on ‘complexity’, one might suppose 
that he assumes that when the wave function reaches a certain degree of complication, 
the universe begins to split. But he does not define complexity (though some authors, 
notably Leggett [22], are now exploring how such a definition may be made, but in a 
different context from that of the many-worlds interpretation). What would be required 
for an adequate formulation of DeWitt’s approach in this regard would be to come up 
with a good quantitative definition of complexity and to assume some further equations 
determining how the splitting of universes is related to this feature of complexity. But if he 
were to succeed in doing this, he would clearly have introduced new concepts as well as 
new equations, and could not hope to claim that the mathematics of the current quantum 
theory determines its own interpretation.

Related to this difficulty is the fact that DeWitt wants to do without a separate classical 
level and yet he does not suggest anything that could take its place. Nevertheless in describing 
what he means by an observing apparatus, he tacitly assumes all sorts of properties that are 
suggested by classical physics, such as the possibility of distinct results which are stable 
and do not vanish in the quantum uncertainties of the Hilbert space. Perhaps he could 
also deal with this problem in terms of the notion of complexity if he could show that, 
with a sufficient degree of the latter, something like a classical world would emerge in a 
certain limit as we have shown in terms of the quantum potential (see chapter 8). But in the 
absence of such a demonstration, we have to say that this key part of his basic intention has 
not been realised (as has indeed been pointed out by GellMann and Hartle [23]).
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13.4 Probabilities in the many-worlds interpretation

Whether we adopt the approach of Everett or that of DeWitt, we are still faced with the 
question of what is to be meant by probability in this general point of view. If we claim that 
the whole universe is completely described by a certain vector in Hilbert space, then this is 
unique and does not allow for a statistical theory (based for example on an ensemble of similar 
universes). How then are we to relate the many-worlds approach to the usual probabilities 
of quantum mechanics? Everett and DeWitt adopt what is basically the same idea.

They consider a long sequence of N measurements on similar systems initially in the 
same quantum state. Their aim is then to prove, without any extraneous assumptions about 
probability, that as N→∞ the relative frequency of a given result will be equal to the usual 
quantum mechanical probability.

For simplicity let us take the system to be a particle with spin. The relevant initial wave 
function is then

ψ0=αψ++βψ−.  (13.4)

We now consider the whole set of systems as forming a single combined system whose 
initial wave function is

χ0=ψ0(1)ψ0(2)…ψ0(N),    (13.5)

where the numeral indicates the particle in question. This can be written as

 (13.6)

We now suppose that the spins of each of these particles is measured by a separate piece of 
apparatus whose relevant coordinate is yn. If  represents the initial wave function of 
the nth apparatus, the total initial wave function is

 (13.7)

It is clear that this wave function is a sum of 2N terms. A typical term would be

 
(13.8)

where  is a product of a certain number, S, of particle wave functions with spin 
 and  represents the product for the N−S remaining particles with spin  
After the measurement process is over, then, in accordance with the von Neumann 

theory that we have given in chapter 2, section 2.4, the term (13.8) becomes
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(13.9)

where  represents the wave function of the pointer of the ith apparatus indicating spin  
and  represents the wave function of the pointer of the apparatus indicating spin  Each of 
the above terms may be said to represent a branch of the total wave function, which latter is

 
(13.10)

It is the object of the proofs given by Everett and DeWitt to show that, except for a set of 
measure zero, all branches will yield a fraction |α|2 for spin  and |β|2 for spin  as the 
number of branches becomes infinite. To do this Everett and DeWitt begin by assuming 
a measure associated with each vector in Hilbert space which is equal to the quantum 
mechanical probability that is usually associated with that branch of the wave function 
in standard quantum theory. For example, if the wave function is αψ++ βψ_, the measure 
of ψ+ is |α|2 and that of ψ− is |β|2. But they do not begin by assuming this is a probability. 
Rather, they take it to be a purely abstract quantity which they have called ‘measure’. They 
then show that in an infinite sequence of measurements the measure of branches in which 
the proportion of spin  differs from |α|2 and that of spin  from |β|2 is zero.

As yet, however, nothing follows from this about actual relative frequencies. To make a 
connection they have to introduce a further assumption. This is essentially that branches of 
measure zero never occur. From this it follows, of course, that in an infinite sequence, we 
will get the right relative frequencies.

But this proof has been criticised by d’Espagnat [24] and others (see Deutsch [25]). 
There is no intrinsic reason why branches of measure zero should never occur, if measure 
is nothing more than a purely abstract mathematical quantity. Moreover we would fail 
to obtain an additional result of standard probability theory which is necessary for its 
consistency: i.e. that sequences of small measure must occur correspondingly rarely. The 
treatment of Everett and DeWitt would in any case apply only to an infinite sequence, but 
the theory must apply to finite sequences that can be carried out in actual experiments. 
Indeed, current probability theory implies that finite sequences of small measure must 
occur sometimes if the distribution is random. In other words, we cannot guarantee that 
there will never be large fluctuations. The proof given by Everett and DeWitt contains no 
way of obtaining such a result (except perhaps by adding further arbitrary assumptions). It 
is only if we suppose that the mathematical measure corresponds to a relative frequency in 
a random ensemble that we can deal with these questions adequately.

In any case a more careful analysis of this situation is made by Ballentine [26] who 
shows that the relative frequencies do not actually approach |α|2 and |β|2 for the case of 
spin  Rather the distribution Ballentine obtains is half and half. One can understand 
this by noting that the only way of bringing probability into this situation is to suppose 
equiprobability of the discrete alternatives, which will, of course, inevitably bring about a 
half-half distribution. It is clear then that the many-worlds interpretations of Everett and 
DeWitt have not succeeded in providing an adequate account of probability.
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To deal with this Deutsch [25] assumes further modifications of the theory. Rather than 
supposing with DeWitt that the whole of existence is continually bifurcating into more 
and more universes, he postulates that there is always an infinite and essentially constant 
number of actual universes. For example in the case of spin that we have treated earlier 
in terms of equation (13.11) each of the whole set of universes initially has spin  and the 
corresponding apparatus is in its initial state. After the measurement process, the universes 
are partitioned among the states indicated by (13.13).

The essential assumption of Deutsch is that there is a random distribution of these 
universes with probabilities corresponding to the usual quantum mechanical probabilities 
for the associated results. In a measurement, we begin with an initial distribution of 
universes in which all of them had the same initial spin state given by ψ=αψ++βψ_ while 
all the apparatuses are in the same state. After the measurement is over this distribution 
is changed into one in which the probability that S particles in the sequence have wave 
function ψ+ (while the remainder have wave function ψ−) is just |α|2S|β|2(N−S). This is, of 
course, just the usual quantum mechanical probability for such a sequence. And from 
this expression it follows that as the sequence approaches an infinite number, the relative 
frequency of spin  will be |α|2 and spin  will be |β|2.

It is clear then that Deutsch succeeds in achieving the aim that Everett and DeWitt 
failed to achieve. However, there are a number of serious questions that Deutsch has 
not yet answered. The most obvious of these is that he has chosen a certain basis for the 
interpretation, in this case the one in which the spin in the z-direction is diagonal. Of 
course it is clear that this basis corresponds to the orientation of the apparatus. But recall 
that one of the basic aims of the many-world interpretations is to get everything out of 
the formalism without further assumptions. Deutsch has not shown why it is just these 
pieces of apparatus that will partition the universes in the way he has assumed. If he stops 
here he will be in a position similar to that of von Neumann who likewise distinguished 
between the apparatus and the rest of the universe without deducing this distinction from 
the formalism. Presumably the apparatus is distinct in that it behaves apparently classically 
as part of the large-scale world of common experience. Deutsch does call attention to this 
point, but like Everett and DeWitt he does not offer any proofs that such a ‘classical’ basis 
must emerge from the formation itself. We shall discuss the question in more detail in the 
next section.

A yet more serious question that we shall discuss here is concerned with the significance 
of the random ensemble of universes that Deutsch had to assume in order to give meaning 
to the concept of probability. In a given branch of the wave function, after the measurement 
process is over, the quantum state of the whole set of particles will be well defined. But 
once such a quantum state is given no further differences within it are possible, at least 
according to the usually accepted form of the quantum theory itself which asserts that 
the wave function gives all possible physical information about the system. How then do 
the many universes in the same quantum state differ? Deutsch does not make this clear. 
It is difficult to see how one could avoid the further postulate that there is an additional 
randomly distributed parameter or set of parameters not present in the ordinary quantum 
theory which would describe their differences. But to do this is to eliminate the key 
advantage claimed for the many-worlds interpretation, i.e. that it introduces no basically 
new physical concepts or equations or parameters. Indeed our own interpretation has been 
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criticised just because it does introduce particle variables as new parameters. At the very 
least we could claim that these variables are relatively easy to understand, whereas with 
Deutsch’s random distribution of universes it is not clear how such parameters are to be 
understood.

Deutsch’s approach has been applied thus far to the DeWitt interpretation in which it is 
supposed that a multiplicity of universes actually exists. Whether this approach can also 
be applied to the Everett interpretation is not clear. Let us recall that for Everett there is 
only one total universe with many points of view, each of which corresponds to a particular 
memory or awareness that is within its total universe. What seems to be called for is a 
random distribution of awarenesses over various quantum states with relative frequencies 
equal to the usual quantum mechanical probabilities for the associated results. To put this 
notion more precisely, let us represent the total wave function of the universe by

 (13.11)

where  represents the ith state of awareness and ψi represents the state of the rest of the 
universe that corresponds to it. The assumption analogous to that of Deutsch would be 
that |Ci|

2 represents the relative frequency of awarenesses of state i corresponding to the ith 
component of the total Hilbert space vector Ψ.

However, there appear to be difficulties with this suggestion. Consider, for example, a 
situation in which some fraction of the observers would be killed in a catastrophic event 
so that their memories would vanish. How would the statistics be formulated to take care 
of such a possibility?

To sum up then, it does not seem that there is as yet an adequate treatment of probability 
within the Everett interpretation, while even within the DeWitt interpretation, Deutsch’s 
further assumptions seem to be able to provide this only by foregoing the claim that no new 
basic principles are needed beyond those of the current quantum theory.

13.5 On the preferred basis and the classical limit

One of the key remaining ambiguities in the basic formulation of the many-worlds 
interpretation is around the question of how the classical limit is to be treated. As we 
have seen, DeWitt’s expressed intention was to avoid the assumption of a classical limit. 
Everett was less clear on this point, but the general tenor of his approach suggests a similar 
attitude. However, if we accept this then we are required either to show that something like 
a classical limit is contained implicitly in the many-worlds interpretation or else to show 
that such a limit is not needed. Yet nothing like this has been done so far in an adequate 
way. As we have pointed out, DeWitt appeals to an as yet vague notion of complexity and 
he seems to imply that this would take care of yielding the relatively well-defined and 
stable kinds of results that are usually comprehended in terms of a classical limit. On the 
other hand Everett explicitly denies that any such property of complexity is needed. Thus 
Everett [27] writes: 
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We impose no restrictions on the complexity and number of degrees of freedom of 
measuring apparatus or observers, and if any of these processes are present (such 
as heat reservoirs etc.) then these systems are to be simply included as part of the 
apparatus or observer.

This lack of explanation of why the actual world of common experience corresponds to 
some kind of classical limit has indeed been noted by Deutsch [25]. As we have already 
pointed out in the previous section he acknowledges that there is some such favoured basis 
for interpretation. Nevertheless it is clear that the basis must be such as to somehow bring 
about the correct classical limit. But Deutsch does not provide an answer to the question 
of how this basis is related to the classical limit. We note that, in DeWitt’s version of the 
many-worlds interpretation, it is also necessary to have this sort of preferred basis as has 
indeed been pointed out by many authors (Ballentine [2], Bell [3], Cooper and van Vechten 
[4], d’Espagnat [5], and Primas [6]).

To bring out what is required, we note that this basis determines the elements that 
correspond to the many-worlds into which a particular universe may further split. Some 
authors have suggested further mathematical assumptions that they hope might lead to 
determination of this basis. For example, Zeh [28] suggests that there is a unique analysis 
of the total wave function into relative states, called the Schmidt decomposition, and that 
this would deal with such questions. But without further concepts and assumptions one can 
easily see that such a treatment would still be ambiguous.

Thus consider an atom in some linear combination of p-states

Ψ=a−ψ−+a0ψ0+a+ψ+,  

where ψ−, ψ0 and ψ+ represent wave functions in which the z-component of the angular 
momentum is respectively −ħ, 0 and ħ. Clearly DeWitt’s splitting of universes cannot go 
so far as to imply that such an atom by itself would split into three copies with angular 
momentum well defined in the z-direction. Indeed if this were to happen, the theory would 
fail to agree with experiment in a domain that is well tested. We would not expect this sort 
of thing to happen even with medium-sized molecules. But as we approach the large-scale 
world of common experience the many-worlds interpretation forces us to assume that at 
some point the universe does begin to split in this way. Just where does this happen? 
As we have remarked earlier it is necessary in DeWitt’s approach to develop some new 
parameters such as complexity and new equations that will determine where the split will 
occur. But as we have seen, if we do this, the basic claim of the many-worlds interpretation 
that it does not introduce new assumptions and principles will again fail.

A similar problem can be seen to arise in Everett’s interpretation, but here it involves 
a certain ambiguity as to what is to be meant by awareness, memory or mind. Thus, for 
example, Everett’s concept of relative state could be applied to a single hydrogen atom 
whose wave function may take the form
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where x is the coordinate of the nucleus and y that of the electron. If we were to apply 
Everett’s theory at this level, we would have to say that the electron is aware of the proton 
and that the proton is aware of the electron. It would then indeed follow that the overall 
awareness associated with the hydrogen atom as a whole would split into many correlated 
states of mutual awareness of the electron and the proton, which states are, however, not 
aware of each other. This would imply that everything was aware of everything else and 
that human awareness (or indeed machine awareness) were only special cases of this.

It is certainly not clear what such a theory could mean. If it were Everett’s intention 
to propose this sort of theory, it would have been up to him to go into what he means 
by universal awareness of everything by everything. For such a notion is evidently far 
more radical than anything that arises in the commonly accepted views of the many-worlds 
interpretation. In the absence of any discussion of this point by Everett or by those who 
follow him, we must assume that such a radical version of his interpretation was not his 
intention.

But then this immediately raises the question of just what determines the conditions for 
awareness to exist. As we have seen, Everett expressly denies that the notion of complexity 
is basically relevant to his theory. Yet it seems evident because of his referring to computers 
and memories, that he has tacitly in mind some kind of complexity (as well as stability) as 
a basis for awareness. This means that he faces essentially the same difficulty as DeWitt. 
He will have to introduce some new assumptions as to what constitutes the conditions for 
awareness and new laws determining just when these conditions are satisfied.

Recently these questions have been re-examined by Stapp [29] and by Albert and 
Loewer [20] in what is called the many-minds interpretation. The key step here is to assume 
that awareness or consciousness is not basically a physical property, but rather a property 
of mind which is supposed to be entirely different from matter. Thus the theory, unlike 
Everett’s, assumes a dualism between mind and matter along lines similar to that proposed 
much earlier by Descartes. The advantage of this approach is that we do not need to assume 
that matter has properties given to it by awareness, i.e. that physical meaning can be given 
in the quantum theory to all branches of a linear superposition of wave functions without 
contradicting appearances. It thus makes possible a more consistent way of separating one 
domain (matter) that satisfies the superposition principle of quantum theory and another 
domain (mind) that does not.

Such a dualist approach is in certain ways reminiscent of Wigner’s suggestions [11], 
but it must be remembered that in the latter, mind and matter are supposed to interact in a 
two-way process. In the many-minds interpretation however there is no such interaction. 
Rather mind is assumed to be capable of becoming conscious of certain aspects of the state 
of matter without influencing the latter in any way at all.

The many-minds interpretation shares with Everett the assumption that physical reality 
corresponds to the total wave function of the universe. Likewise along with Everett, it 
assumes that on the large scale stable configurations of matter exist which make possible not 
only measuring instruments, but also a reliable memory of what the results of measurement 
are. We recall in the Everett theory that the wave function describing relevant parts of the 
spin measuring apparatus and the memory is given by equation (13.3).
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The basic new assumption relative to Everett’s is that each person has a total mind that can 
split into many sub-minds that are not aware of each other. Each mind can be aware of a 
particular brain state corresponding to a memory of a particular experimental result that is 
stable and distinct from other memories corresponding to different possible results of the 
experiment. Let these minds be represented by μ+ and μ−. If the mind were in the domain of 
quantum mechanics, the wave function would then be in a linear superposition

 
 

But here is where a break is made with the basic principles of quantum mechanics by 
assuming that μ+ and μ− do not superpose. We further assume a random process in which 
the original mind m has split into two distinct new minds, μ+ and μ−. The mind μ+ is aware 
of the physical situation whose wave function is  and mind μ− is aware of the 
physical state corresponding to the wave function with the minus sign. Neither μ+ nor μ− 
are aware of each other.

In the further development of this process, there will be additional splits in the mind. 
For example, if some physical property corresponding to a wave function ξN is measured 
and remembered, there will then be a total of 2N minds aware of the N physical states, N, 
corresponding to measurements and memories of both the spin and the new property.

In the random process in which the mind splits, we assume that the probability of a 
particular mind being associated with the Nth physical state and a particular spin variable 
‘+’ is proportional to |αN|2. As time goes on there will be a constant process of further 
splitting of the mind.

All of this is very close to the treatment given by Everett and differs only in that we 
have further assumed a unique last stage, i.e. mind, in which the linear superposition fails 
(whereas Everett says nothing about this question). By thus defining this unique last stage 
as a splitting of the mind and relating this split to the linear superposition of memories in 
the brain through random processes, the many-minds interpretation avoids difficulties of 
specifying the basis in which linear superposition breaks down.

On the other hand, this advantage has been gained at the expense of not only bringing in 
duality of mind and matter, but also of having to assume special properties of mind which 
are difficult to understand, i.e. the ability to be aware of matter without any interaction 
and the ability to split in a random way into many minds, each of which is associated to a 
particular physical state.

It should be pointed out here that the many-minds interpretation does not imply 
nonlocality. This comes about because reality is assumed to be in perfect correspondence 
with the total wave function of the universe and because the whole of this reality is covered 
completely by the perceptions of the many minds which have no effect on the wave 
function. Because Schrödinger’s equation contains only local interactions, its development 
is entirely local even though it has to be expressed in configuration space. Each mind 
becomes aware of only one facet of this multidimensional reality.
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The perceived classical world is then a result of the fact that each mind is only aware 
of a small part of the whole, the perceived classical world is in a sense an illusion. What is 
illusory is that this part is the whole. If it were seen to be merely a facet then there would 
be no illusion.

To conclude, the many-minds interpretation does remove many of the difficulties with 
the interpretations of Everett and DeWitt, but requires making a theory of mind basically to 
account for the phenomena of physics. At present we have no foundations for such a theory. 
Indeed even to consider the mere possibility of this sort of assumption, we have further to 
suppose that there are new kinds of laws uniquely relating real physical properties such as 
awareness, to parts or components of the total vector in Hilbert space. As we have pointed 
out in section 13.2 this is equivalent to assuming that the state of awareness is not limited by 
anything like the uncertainty principle—clearly a gigantic step beyond present day physics. 
Thus even if we succeed in developing such a theory, it is clear that we will require new 
principles, new concepts and new equations. This means once again, that the claim of the 
many-worlds interpretation to avoid the addition of speculative new assumptions will fail.

13.6 Comparison between our interpretation and that of the many-worlds

One of the first objections that tends to arise against the many-worlds interpretation is that 
its assumption of an infinity of universes or minds, almost all of them being unobservable, 
violates the principle of Occam’s razor, i.e. that we should not introduce a multiplicity 
of unnecessary assumptions. However, the proponents of this interpretation answer such 
objections by saying, e.g. with d’Espagnat [5], that multiplication of worlds entitles one to 
economise on principles. Or as Primas [6] has said, “The Everett interpretation is superior 
in logical economy.” As we have already indicated, they would criticise our interpretation 
by saying that in addition to postulating the reality of the wave function, it brings in the 
further concept of particles with their equations of motion. It is thus clear that they feel that 
the many-worlds interpretation is superior because it does not do this sort of thing.

Leaving aside this question for the moment, it should be said that our interpretation 
accomplishes a number of things which cannot be done in the many-worlds view. Firstly, 
as we have seen in chapter 8, it gives a simple and coherent account of why the large 
scale world of common experience should be essentially classical. This is demonstrated 
by showing that the quantum theory implies a relatively autonomous domain in which 
the quantum potential can be neglected so that an approximately classical behaviour will 
result.

The physical structures of observers are also manifest in this domain. As pointed out 
in chapter 8, it is a well-known fact that our sensory information comes from this level. 
From this it follows that we are directly aware of the particle aspect of the universe through 
the senses and that the more subtle wave function aspect is inferred by thought about our 
sensory experience in the domain that is manifest to the senses. We are therefore not basing 
our approach on the assumption that we are aware only of particles. Rather we are simply 
making use of the fact that at least in science as we know it thus far, all information comes 
ultimately through the manifest level (recalling that it comes not only through the particles, 
but also through the classical limit of electromagnetic field beables).
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The second advantage of our interpretation is that we do not have to assume the relation 
ρ=|ψ|2 ab initio, but that we are able to arrive at this as an equilibrium distribution resulting 
from chaotic processes.

Finally we cite what we regard as the main advantage, which is that it gives an intelligible 
and intuitively understandable account of how quantum processes take place.

It is clear that the many-worlds interpretation cannot do any of these things. As we have 
seen earlier, it does not provide an adequate account of the large scale behaviour at the 
classical limit. Moreover it is compelled to assume the relation ρ=|ψ|2 (e.g. as was done by 
Deutsch). And it gives no intuitively intelligible account of how quantum processes take 
place.

With regard to the latter point, it defies the imagination to grasp intuitively how the 
universe could split, and even more as to how it could be doing so in a stupendous number 
of ways. It equally defies the imagination to grasp intuitively how awareness could split 
into many parts that are not aware of each other, and even more so how awareness could 
be, in effect, identified with some part of a vector in Hilbert space.

Let us then consider once again the claim that the many-worlds interpretation is the one 
that is most economic in concepts and principles. We have seen, however, that in order to 
introduce probability in a consistent way, Deutsch had to assume an infinity of universes 
in the same quantum state, and in effect to imply a random distribution of these universes 
over an undefined parameter whose nature is completely unspecified. As we have pointed 
out earlier, he has thus in essence replaced the new particle variables by a new parameter 
that would distinguish the various universes. So there is no advantage in the number of 
hypotheses. Moreover there is the disadvantage that his new parameters are far less clear 
in meaning than others.

If we adopt DeWitt’s approach, then, as we have seen, it is necessary to supplement 
this with some further principles involving perhaps an as yet unavailable definition of 
complexity and further equations determining just how this would determine the splitting 
of universes. On the other hand, if we adopt Everett’s approach or indeed that of the 
many-minds interpretation, we have to do something similar with regard to the splitting of 
awareness. In this connection a complete and consistent expression of these interpretations 
would, as we have seen, require new principles and assumptions of a speculative nature 
going beyond the current quantum theory and beyond our present knowledge of awareness 
and its possible relationship to Hilbert space.

In view of all these unresolved problems we have been led to ask why the many-
worlds interpretation seems to be so attractive to some physicists. Of course we realise 
that the Hilbert space formulation of quantum mechanics has a great deal of symmetry 
and may therefore be felt to possess great beauty. Hence it is understandable that there 
may be great reluctance to give it up or to go beyond it. On this basis one can see that the 
greatest advantage of the many-worlds interpretation for its proponents is that it provides 
an ontological formulation which relates all its basic concepts only to Hilbert space. In 
effect its says that everything can be put in some correspondence with Hilbert space. The 
first priority is thus to maintain the notion that all basic structures of concepts have to be 
expressed in terms of Hilbert space. As long as this can be done it is felt that all sorts of 
further assumptions are possible and that these do not count heavily as new principles. For 
example the assumption that the mind can be put in correspondence with a component of a 
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vector in Hilbert space is considered to be of minor importance compared with maintaining 
the universal validity of the concept of Hilbert space itself. Similarly with regard to all the 
other assumptions that we have outlined here.

We can however ask whether symmetry and beauty are always a sure sign that we 
have reached an ultimate truth that can never be altered through further enquiry. Indeed 
in our approach, which we shall explain in more detail in the next chapter, we argue that 
there is no reason to assume the ultimate truth of any particular feature of knowledge, 
however beautiful we may feel it to be. Moreover from our discussion of the many-
worlds interpretation, which shows that it has not yet fulfilled its claims to economy of 
principles, it does not seem to be justified to dismiss the assumption of new concepts in 
our interpretation (such as particle variables) that go beyond what can be accommodated 
in terms of Hilbert space.

As we have already remarked earlier we feel that the many-worlds interpretation has 
interesting possibilities, but that its presentation would be greatly clarified it if were frankly 
admitted that some of its basic hypotheses are of a highly speculative nature. Indeed the 
main motivation behind the many-worlds interpretation is, in our view, not really the 
minimisation of principles and hypotheses. But rather it is to retain Hilbert space as the 
ground for the basic conceptual structure so that everything in the theory can be formulated 
in terms of Hilbert space. It could be valuable to develop such a theory but it has to be said 
that before this is actually done in an adequate way, many as yet unresolved difficulties 
have to be dealt with. We shall go into this question further in the succeeding chapters.
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 Chapter 14  
Extension of ontological theories beyond the  

domain of quantum mechanics

14.1 Introduction

Thus far our discussion has centred on various interpretations of the current quantum 
theory. But one of the implications of an ontological approach is that within its conceptual 
framework it is possible to contemplate certain modifications and extensions of the 
mathematical laws that go beyond the domain of the current quantum theory. In this chapter 
we shall discuss a number of suggestions along this line made by various authors and in the 
last section (14.6) we shall also include some of our own proposals for doing this.

14.2 Our general world view, including our attitude to physical and 
mathematical aspects of basic concepts

Before going on to a detailed discussion of our proposals for the extension of quantum 
mechanics in new ways, we would like to give the outlines of our general world view. This 
will help make more clear what our motivation is in developing our theories. In addition it 
should help to clarify certain differences between our attitude towards basic physical and 
mathematical concepts and that which seems to be behind most of the other approaches.

We shall begin by discussing the latter question first. Thus we have seen in the previous 
chapter, for example, that the basic attitude in the many-worlds interpretation is to take the 
present general mathematical formulation of quantum mechanics as the essential truth and 
to try to derive the physical interpretation as something that is implicit in the mathematics. 
Many speculative new assumptions have been made within this mathematical framework, 
but the first priority has been to retain this framework as the ground for the general conceptual 
structure. Some of the proponents of the many-worlds interpretation, for example, Deutsch 
[1] as well as Gell-Mann and Hartle [2], whose work will be discussed further on in this 
chapter, are even ready, at least in principle, to consider extending their theories beyond 
the current quantum mechanics. In addition the same may be said of Ghirardi, Rimini and 
Weber [3], whose work we will also consider later in this chapter. However, even these 
authors are in essential agreement that what should not change is the requirement that the 
Hilbert space (and its natural extension to an infinity of dimensions) would be the basic 
structure in terms of which all other concepts must be expressed.

This attitude towards the mathematics has not always been dominant in physics. Indeed 
until the present century, the physical concepts were, for the most part, considered as primary, 
while mathematical equations were regarded as providing a more detailed and precise way 
of talking about these physical concepts. However, during the twentieth century with the 
advent of quantum theory (and to a lesser extent, relativity) the mathematics became much 
more highly developed and the physical interpretation much more abstract and indirect, 
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as well as much less clear. As a result there was a constantly increasing focus on the 
mathematics, while the physical ideas were given less and less importance. Thus during 
the 1920s Sir James Jeans said that God must be a mathematician, implying by this that 
the universe was constructed on a mathematical plan and that its essence is best grasped in 
terms of the mathematics itself. Later, Heisenberg went much further along these lines and 
said very explicitly that the essential truth was in the mathematics. This view has become 
the common one among most of the modern theoretical physicists who now regard the 
equations as providing their most immediate contact with nature (the experiments only 
confirming or refuting the correctness of this contact). So without an equation there is 
really nothing to talk about. On the other hand, in the past we began talking about our 
concept of physical reality and used the equations to talk about them.

One of the reasons that our interpretation of the quantum theory may not have been so 
well understood is perhaps that it is not commonly realised that we have a rather different 
attitude to the mathematics. Our approach is not simply a return to the notion that the 
mathematics merely enables us to talk about the physical concepts more precisely. Rather 
we feel that these two kinds of concepts represent extremes and that it is necessary to 
be in a process of thinking that moves between these extremes in such a way that they 
complement each other.

We fully accept that progress can be made from the mathematical side alone, but we 
feel that to stick indefinitely to this approach is too limited. For example, starting with 
Schrödinger’s equation expressed in the Hamilton-Jacobi form, we were led in chapter 
3 to a new physical concept of a particle which is affected by a quantum field in a way 
that depends only on the form of the latter and not on its amplitude. With the aid of the 
concept of active information implied by this behaviour, we can first of all obtain a coherent 
explanation of the quantum process which gives us new insights into the quantum theory 
and enables us to understand it in a different way. But we do not regard these physical 
concepts as mere imaginative displays of the meaning of our equations. Instead, as we shall 
see in this chapter, we can then move to the other side of this process of thought and take 
our physical concepts as a guide for the development of new equations. In this way we are 
engaged in at least the beginning of a kind of thinking in which the clue for a creative new 
approach may come from either side and may flow indefinitely back and forth between the 
two sides.

It should be clear from the above that we do not expect to come to the end of this process 
of discovery (for example, in a form that is currently called the “Theory of Everything”). 
Rather our view is that nature in its total reality is unlimited, not merely quantitatively, but 
also qualitatively in its depth and subtlety of laws and processes (see D.Bohm [4]). Our 
knowledge at any stage is an abstraction from this total reality and therefore cannot be 
expected to hold indefinitely when extended into new domains.

In any case it is evident that there is no way to prove that any particular aspect of our 
knowledge is absolutely correct. Indeed no matter how long it may have demonstrated 
its validity, it is always possible that later it may be found to have limits. For example, 
Newtonian physics, which held sway for several centuries, was found to be limited and 
gave way to quantum theory and relativity. Yet just before this revolution took place at 
the end of the nineteenth century, Lord Kelvin, one of the leading physicists at the time, 
advised young people not to go into physics because it was finished and only subject to 
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refinement in the next decimal places. Nevertheless he did point to two small clouds on 
the horizon, the negative results of the Michelson-Morley experiment and the problems 
of black body radiation. It must be admitted that he chose his clouds correctly, though he 
totally underestimated their importance. Nowadays physicists are similarly talking about 
an ultimate unified theory including the four forces and perhaps strings, supersymmetry 
etc. that would explain everything. However, it can hardly be said that the clouds in this 
picture are only two and restricted to being small.

Our notion of the qualitative infinity of nature can usefully be brought out by considering 
the role of the atomic hypothesis of Democritus which we have already discussed in chapter 
12, section 12.8. Not only did this hypothesis show the importance of speculative new 
concepts going far be-yond what could be demonstrated at the time of its proposal, but 
it also exhibited a further key feature that we would like to emphasise here. This is that 
deeper explanations often imply the limited validity of what were previously accepted as 
basic concepts, which later are then recovered only as approximations or limiting cases.

This relationship of concepts is indeed typical of the whole of our experience. For 
example, as we go round a circular table, what we see immediately is an ever changing 
elliptical shape. But we have learned to regard this changing shape as a mere appearance, 
while the essence, i.e. the true being, is considered to be a rigid circular object. This latter 
is known first in thought, but later this thought is projected into our immediate experience 
so that the table even appears to be circular.

But further investigation shows that this object is not solid and eventually discloses 
an atomic structure. The solid object now reverts in our thought to the category of an 
appearance, while the essence is the set of atoms out of which it is constituted. However, 
deeper studies then showed that even the atom is an appearance and that the essence is 
a nucleus surrounded by moving planetary electrons. And later still even these particles 
were seen to be appearances, while the essence was a set of yet more fundamental particles 
such as quarks, gluons, preons, or else sets of excitations of strings, etc. But, in all of this 
development of our knowledge, it seems that whatever we have thought of as matter is 
turning more and more into empty space with an ever more tenuous structure of moving 
elements. This tendency is carried further by quantum field theory which treats particles as 
quantised states of a field that extends over the whole of space.

What has been constant in this overall historical development is a pattern in which at 
each stage, certain features are regarded as appearance, while others are regarded as of 
an essence which explains the appearance on a qualitatively different basis. But what is 
taken as essence at any stage, is seen to be appearance of a still more fundamental essence. 
Ultimately everything plays both the role of appearance and that of essence. If, as we are 
suggesting, this pattern never comes to an end, then ultimately all of our thought can be 
regarded as appearance, not to the senses, but to the mind.

What science is aiming for is that these appearances be correct, i.e. that the actions 
flowing from them, such as experiments, be coherent with what the appearances would 
imply. Incorrect appearances are thus either mistaken or illusory. The progress of science 
then implies the elimination of mistakes and illusions and the development of new sets 
of related appearances at various levels. Thus with the table to have the appearance of an 
elliptical object is correct only in a very limited sense. By bringing in the thought that the 
object is a rigid circle, we obtain a more nearly cor-rect overall set of appearances. The 
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thought of the atomic structure then makes the whole set still more nearly correct and so on. 
Thus what we are doing is constantly extending the appearances with the aid of thought. 
The ultimate reality is unlimited and unknown, but its successive appearances serve as an 
ever more accurate guide to coherent action in relation to this reality.

Another way of looking at the notion of appearances is to note that appearances basically 
are what arise in our perception of the world. As we have seen, the appearances in sense 
perception give rise to inferences about an essence that might be their origin, but this 
essence, which is seen in thought, turns out to be yet another appearance and therefore 
still part of our overall perception. No matter how far we go, we are therefore involved 
basically in perception. Our theories are not primarily forms of knowledge about the world 
but rather, they are forms of insight that arise in our attempts to obtain a perception of a 
deeper nature of reality as a whole. As such we do not expect their development ever to 
come to an end, any more than we would look forward to a final sense perception. This 
view of theory as perception can be found in Bohm [5].

At any stage in the development of perception as described above, there is always further 
room for new concepts which serve as ways of looking at reality. Such concepts may, in our 
approach, be either physical or mathematical or both. Thus we do not suppose that physical 
concepts are merely something to be put in correspondence with the basic mathematical 
concepts. Nor do we suppose that the mathematical concepts are necessarily subordinate 
to basic physical concepts. Rather both of these are appearances and their relationships 
may provide a yet more comprehensive appearance which guides our action towards the 
unlimited and unknown reality. The imaginative qualitative concept is therefore, in the 
long run, just as key a feature of this overall appearance as is the precise and abstract 
mathematical concept. The two together not only present a more comprehensive appearance 
than either one alone could do, but each can serve as a clue for further development in the 
other.

In all this, scientific theory may even go so far as to throw some light on the observer, 
to whom all these appearances are supposed to be taking place. But as with everything 
else, even such theories are only further extensions of appearances, so to speak, which 
give the observer a mental mirror in which he or she is reflected. There will therefore be no 
final theory of the observer. The ultimate nature of awareness is unlimited and unknown, 
like that of the universe as a whole of which it is a part. In the next chapter, we will make 
further suggestions as to how the universe can include observers, which are along the lines 
described above.

It may be readily seen that this general approach implies a certain kind of limit 
to determinism. For in it, each theory is evidently an abstraction from a totality that is 
inherently unlimited, both qualitatively and quantitatively. As such, it evidently cannot be 
entirely self-determined, because it always depends in various ways on what has been left 
out. So the necessity of its self-determination is only relative and not absolute.

Even here this self-determination may include unstable chaotic orders which approximate 
randomness. However, even the chaotic or stochastic character may be contingent and 
determined by conditions in domains not covered by the particular theory in question. For 
example, random variations in the trajectory of a Brownian particle may be partially or 
even totally determined by atomic motions at a deeper level.
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So ultimately our overall world view is neither absolutely deterministic nor absolutely 

indeterministic. Rather it implies that these two extremes are abstractions which constitute 
different views or aspects of the overall set of appearances. Which view is appropriate 
in a given case will depend both on the unknown totality and on our particular mode of 
contact with it (e.g. the kinds of experiments we are able to do). So as the situation changes, 
different views are constantly called for. But the unknown and unlimited essence is not 
restricted to any of these views. Rather it may be thought of as somewhere between them 
and ultimately beyond them, as indeed it is beyond what can be captured in thought, which 
is always limited to some abstraction from the totality. (For a more detailed discussion of 
this approach, see Bohm [5].)

The above is a special case of how even our basic concepts and categories of thought 
are ultimately appearances. If this is so, what then is the point of making an ontological 
interpretation of the quantum theory? To answer this, we first point out once again that 
every theory is not only a mere appearance, but that it is more, in the sense that its basic 
concepts must be said in some sense to reflect reality within its own domain. In other 
ontological theories suggested thus far in physics, it is either implied or asserted that such 
basic concepts correspond to independently existent realities, for example, not dependent 
on context or deeper levels of being. In our approach, however, the basic concept of a given 
theory may reflect a reality that is inherently dependent either on context or on deeper 
levels or on both. For example, the elliptical appearances of a circular object may be seen 
as realities by considering the light coming from the object to the eye and how the eye 
makes an elliptical image which is in some way carried back into the brain. This we may 
consider to be an essential part of the reality corresponding to the elliptical appearance. 
Clearly this reality is not independently existent but depends on a context including the 
whole process that we have mentioned, as well as much more and particularly on the 
circular object which is taken to be the essential meaning of the ellipti-cal appearances. 
But then the circular object is found to be dependent for its existence on a wide range of 
contextual parameters, e.g. temperature, and especially on the atomic constituents which 
are considered to be its essence. We find a similar behaviour as we go through a series of 
deeper essences and appearances.

In particular as we come into the quantum domain, we find that it is necessary to state 
the relationship between essence and appearance explicitly by considering a totality 
which includes the measuring instruments as well as what is measured. In this case, the 
appearances show themselves in the instrument, while the essence is the whole quantum 
ontology of quantum fields and particles. The reason why the totality must explicitly 
include the appearances is that there is an irreducible participation of object and observing 
apparatus in each other in the quantum domain, while in the domains treated by previous 
theories, the relation between essence and appearance can be neglected or else taken as 
only implicit.

Because essence and appearance had thus to be considered as a totality, this created 
a serious problem for the extension of the traditional approach into the domain of the 
quantum theory. When the quantum theory was first developed, people did not see how 
this question could be approached onto-logically. Instead there was developed a basically 
epistemological approach of Bohr [6], Heisenberg and von Neumann in which the 
fundamental concepts of the quantum theory were taken as representing only knowledge. 
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The feeling that any other approach was impossible seems to have been grounded in the 
assumption that any ontological approach would have to have a final essence that was not 
dependent on anything else at all, so that it would never be necessary to consider essence 
and appearance as a totality, as we have done.

To sum up, although each form of thought of the essence is an appearance, it also reflects 
a reality that is however always dependent for its existence as well as for its qualities and 
properties on broader contexts and deeper levels. This is one of the senses in which the 
theory is ontological, in spite of the fact that all thought gives appearances. In addition, 
our approach provides a reflection of reality that is in the form of a totality, including the 
measuring instruments along with everything else. This does not mean, of course, that it 
tells us everything about the universe or that it gives a final picture. Rather, as we shall 
bring out in more detail in the next chapter, one may here use the analogy of a hologram, 
in which any part of the record gives us information about the whole object rather than 
a part of it. This feature of our ontological approach is evidently especially important in 
cosmology and it is also important if it is ever our intention to understand the relation 
between the observer and the observed.

In addition to all of this, our particular ontological interpretation has the further advantage 
that it can be grasped more readily in an intuitive and imaginative way than is possible with 
a basically epistemological interpretation such as, for example, that of Bohr. Besides, as we 
shall see in section 14.6 of this chapter, it makes possible certain kinds of extensions of the 
basic equations which would not be possible in a purely epistemological approach. Thus it 
opens the mind to exploration of new domains which would not be discernible without the 
ontological concepts. It is not that we want to dismiss the epistemological approach totally, 
but rather that we feel that both approaches have to be pursued and perhaps ultimately 
brought into relationship.

Finally the view that our theories constitute appearances does not deny the independent 
reality of the universe as a whole. Rather it implies that even the appearances are part of 
this overall reality and make a contribution to it. What we emphasise is, however, that the 
content of the theory is not by itself the reality, nor can it be in perfect correspondence 
with the whole of this reality, which is infinite and unknown, but which contains even 
the processes that make theoretical knowledge possible. It is our view that this approach 
provides a more coherent understanding of the relationship of theory to the reality towards 
which it guides us, than do other approaches that are currently available.

14.3 The Ghirardi, Rimini and Weber approach

As we indicated in the introduction, a number of new ontological approaches in principle 
going beyond the current quantum theory have been suggested which have in common that 
they aim to preserve the notion that Hilbert space (with its natural extension to an infinity 
of dimensions) is the basis of the entire conceptual structure. One of the most interesting of 
these is the unified dynamics for microscopic and macroscopic systems of Ghirardi, Rimini 
and Weber (GRW) [3].

We give here a simplified treatment due to Bell [7]. The wave function ψ(r1, r2,…rn, 
t) is assumed to evolve according to Schrödinger’s equation. However, there is a further 
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process which reduces the spread of the wave function over each particle coordinate, rn, 
to something of the order of a new universal constant α. This is in a certain way similar to 
the process of collapse in the von Neumann interpretation, but the differences are that (1) 
this is happening in general and not just in a measurement process, and (2) this process 
constitutes a well-defined extension of the quantum mechanical laws of the development 
of the wave function.

At first sight it might seem that if a is chosen small enough to bring about the kind of 
localisation needed for a classical object, then this might contradict the quantum mechanical 
predictions of interference over fairly large distances. (For a more detailed account of this 
point see Shimony [8] and Weinberg [9].) However, it should be recalled that quantum 
mechanical interference properties over long distances have been extensively tested for the 
case of a single particle [10, 11] and at most for a few particles [12].

We can avoid this difficulty by supposing that the rate of decay, λ, depends on the 
number of particles, N, involved. Thus we can write   where  is a characteristic 
time which is a new constant of nature.  can be chosen such that the rate of decay of 
the original wave function is negligible for a system of a few particles and quite rapid for 
systems with many particles, e.g. of the order of 1020.

To simplify the discussion, we assume a process in which the spread of the wave function 
is reduced to something of the order of a around a centre x which is distributed at random. 
For the nth particle this process can be regarded as transforming the original wave function 
ψ(r1, r2,…rn, t) into a new wave function

 
(14.1)

The factor f(x) is normalised according to

 
(14.2)

GRW suggested that f(x) be a Gaussian, for example

 
(14.3)

Rn(x) is a normalising factor where

 
(14.4)

The centre x is distributed at random with probability |Rn(x)|2.
We are assuming that each particle is undergoing this process of narrowing down the 

range of the wave function so that after a time  the wave function will be reduced 
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more or less to something having a range, α, for each particle. Interference will then be 
negligible beyond this range, but will be as predicted by quantum mechanics within this 
range, provided of course that we are considering times appreciably longer than  It 
should be clear that the above assumptions will enable us to satisfy our requirements that 
large scale systems (such as the observing apparatus) will be fairly localised, while systems 
of a few particles need not be localised. 

It is possible now to show how the GRW approach allows a consistent treatment of the 
measurement process as a special case of the general process in which the wave function 
of a system of many particles narrows down to a fairly well- defined region. As shown in 
chapter 2, section 2.4, the wave function, after the interaction between apparatus and the 
observed system, is

 
(14.5)

where x represents the coordinates of the observed system (of which there are only a few), 
while y1,…yR represent all the internal co-ordinates of the apparatus. Y represents the centre 
of mass co-ordinate of the apparatus which is directly observed at an essentially classical 
level (e.g. the pointer position). After the interaction is over the  do not overlap in the 
coordinate Y, but as pointed out in chapter 2, section 2.4, there is still potentiality for 
interference as long as we have a linear superposition of this kind. However, if we bring 
in the GRW process of narrowing down the wave function to something with a range of a 
and if the separation in the centre of mass coordinate, Y, of neighbouring wave packets is 
considerably greater than α, then this possibility of interference will be destroyed.

To see how this happens we note that the  and ψn undergo independent GRW processes 
and that the effect of this process on ψn is negligible because there are only a few particles 
in the observed system. In general we may expect that the  to have had a fairly narrow 
range of yR even before the measurement took place and that this range will not change 
significantly in the measurement process (which does not in general greatly affect the 
internal coordinates of the apparatus).

As we have pointed out earlier, it is only the spread of the centre of mass coordinate Y 
that is affected. The GRW process will cause the collapse of all but one of the  to leave a 
single result  with a well-defined ‘pointer’ reading Y. In this way we obtain 
a definite result. Clearly this process will not lead to paradoxes such as the Schrödinger 
cat paradox.

If we consider an ensemble of experiments we will find that in some cases the wave 
function (14.5) will collapse to one packet and in other cases to another, so that we will be 
left with a random distribution of well-defined results. It is easily shown that the probability 
of the mth result is |Cm|2, in agreement with the usual quantum mechanics.

It is still necessary, however, to be sure that the GRW modification of the dynamics 
of microscopic constituents does not imply physically unacceptable consequences for the 
dynamics of the whole system. GRW go into this question in some considerable detail, 
and show that no such unacceptable consequences will arise. In doing this, they are led to 
suggest values for the universal constants
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Objects containing many particles will then be localised to within 10–5 cms. A one-particle 
system will not be localised in less than something of the order of 109 years. But a system 
of 1020 particles will be localised in 10–4 secs.

In comparison, our own approach introduces a random distribution of particle positions, 
ξ, with a probability density equal to |ψ(ξ)|2. Whether one regards the GRW approach 
as having a greater or lesser economy of assumptions depends primarily on whether or 
not we give first priority to retaining Hilbert space as the basic mode of expression of all 
concepts.

However, we can add that thus far our approach is well defined and thoroughly worked 
out, whereas the assumptions of GRW have evidently a great deal of arbitrariness in them. 
Of course one might adopt the attitude that this arbitrariness may eventually be reduced 
by the development of further new ideas. But here one should note that it seems difficult 
to include the GRW approach in a relativistic context. For it has all the nonlocality of 
ordinary quantum theory and possibly some additional ones. Therefore it seems likely 
that further new developments of this approach may lead to the need to assume a deeper 
non-relativistic level, rather as we have had to do in our own interpretation as explained in 
chapter 12, section 12.8.

Leggett [13] has yet another approach which is in considerable sympathy with that of 
GRW. As we have already indicated in a previous chapter, he wants to introduce a new 
concept of complexity in the form of what he calls disconnectivity. In a macroscopic object 
it is to be expected that this disconnectivity is very large and he would anticipate that in 
such cases Schrödinger’s equation should change significantly in such a way as to remove 
interference between macroscopically different states. However, he has not yet proposed a 
more definite form for such a theory because he wants to find some experimental evidence 
for a breakdown of quantum mechanics in the macrodomain to guide his suggestions.

14.4 Stapp’s suggestions for regarding quantum theory as  
describing an actual process

A rather different approach to an ontological theory of quantum mechanics has been 
suggested by Stapp [14]. (Stapp bases his approach on S-matrix theory, but there seems to 
be no inherent necessity for doing so.) His aim is to develop a theory in which quantum 
mechanics would describe an actual process taking place without any necessary reference to 
human observers. In doing this he is inspired by the ideas of Whitehead concerning nature 
as process. Whitehead [15] works in terms of the basic concept of an actual occassion, or 
as Stapp might call it, an actual event. In particular, that which is actual is represented, not 
by an infinitely thin space-like surface advancing through the space-time continuum, but 
rather by a sequence of actual processes, each of which refers to a bounded space-time 
region. In such a process a given event, n, is represented by a restriction on the set of 
classical fields allowed in the bounded space-time region Rn. The basic concept is therefore 
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neither becoming in three-dimensional space nor being in the four-dimensional world, but 
rather it is becoming in the four-dimensional world.

We have referred to regions of space-time Rn, but ultimately Stapp wants to derive even 
these from the quantum theory. He suggests this may be achieved in a manner mentioned 
in the previous chapter (section 13.6). He has shown [16] that the ‘soft’ photons emitted by 
matter have well-defined ‘classical’ parts described by coherent states. As we have already 
said in a previous chapter (chapter 8), this shows that the quantum theory may contain a 
classical domain within it. Such a classical domain is what makes it possible to define the 
regions Rn in a physical way.

It remains to define what is to be meant by an event within the process assumed by Stapp 
[14]. He considers process to consist of a well-ordered sequence of actual events. Just prior 
to event n, there are several possibilities of what may be actualised. Let these possibilities 
be labelled by the set en. Only one of these events will become actualised. Let it be called 
an. For each an, there is a corresponding region Rn. Moreover for each possible event an, 
there is a projection operator Pn(an) which restricts the classical field inside the region Rn to 
some subset of the set of all conceivable classical fields in Rn.

Let S(en) be the S-matrix subject to the condition that classical fields be limited to those 
allowed by the product of projection operators

P(an)P(an−1)P(an−2)…
 

Let din be the initial density matrix and let d(en) be the density matrix transformed in the pro-
cess of development described by the quantum theory. This will give d(en)=S(en)dinS+(en). 
Then the probability for the event en is assumed to be

 

 

It is clear that Stapp’s basic idea also defines everything within the framework of Hilbert 
space. A basic new assumption in his approach is that certain kinds of actual events, en, 
correspond to specifiable projection operators P(en) and that statistical averages of any par-
ticular kind of sequence of such events will be determined in the way described above by 
averaging these operators with din, the initial density matrix of the universe. The assump-
tion that events correspond to projection operators, even though these are not measured, is 
evidently something new, not contained in the current quantum theory. In contrast, in our 
interpretation we assume, as we have already pointed out earlier, a particle position ξ with 
a probability density |ψ(ξ)|2. As with the GRW approach, the decision as to which of these 
theories has a smaller number of hypotheses depends on whether or not we give a very high 
priority to taking Hilbert space as the basic concept.

One of the principal difficulties with Stapp’s proposal is that the concept of an event has 
not been very thoroughly developed. First of all Stapp has not provided a general criterion 
for the kinds of projection operators that could represent events, especially of how ‘fine 
grained’ is the analysis that he will allow at this event level. (We shall discuss this question 
further in another context in the next section.)
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Next it seems that the ‘classical’ parts of quantum mechanics should be described in 

terms of the movement of fermionic particles as well as bosons. The classical context 
should also include large scale systems and perhaps even large molecules as well as a theory 
of soft gravitons which would be needed to establish the notion of metric as contributing to 
events. It is conceivable, as Stapp himself hopes, that further new ideas might meet at least 
some of these requirements.* Indeed in the next section we shall discuss certain proposals 
of Gell-Mann and Hartle which do start along these lines and go some way to developing 
a theory so as to deal with questions of this kind.

14.5 The cosmological approach of Gell-Mann and Hartle

Gell-Mann and Hartle [2] have independently suggested a theory along lines similar to that 
discussed in the previous section which aims to provide an interpretation that covers the 
whole cosmological context.

These authors criticise traditional approaches in a way similar to that in which we do. In 
addition they especially emphasise the question of making an interpretation that is adequate 
for cosmology. In such a cosmological approach they say that there can be no fundamental 
division into observer and observed. Besides, there is no reason to assume a classical world 
as fundamental or outside the basic quantum theory.

They regard Everett [18] as the first one who suggested how to generalise the conventional 
interpretation so as to apply quantum mechanics to cosmology. He did this by showing how 
an observer can be considered as part of the system and how the observer’s activities of 
measuring, recording and calculating probabilities could be described in quantum mechanics 
along lines that we have discussed in the previous chapter. However, in agreement with 
what we have said there, they regard the Everett analysis as incomplete. Gell-Mann and 
Hartle feel that it does not adequately explain the existence of the classical world or the 
meaning of the ‘branching’ that replaces measurement in assigning probabilities. It was, 
they say, a theory of ‘many worlds’, but it did not explain sufficiently how they were 
defined or how they arose.

In a short paper they briefly sketch their extension of the conventional formulation of 
quantum mechanics, which they claim meets these criticisms [2]. They regard it primarily 
as “an attempt at extension, clarification, and completion of the Everett interpretation”. 
They admit the research is far from complete, but they regard their paper as a sketch of 
how it may become so.

We shall here give a summary of their general approach.

14.5.1 Histories

The theory of Gell-Mann and Hartle [2] has to be understood, from the very outset, as 
dealing with nothing less than the entire history of the universe from the beginning to the 
end. However, to get on with the exposition, they allow themselves in this paper to ignore 

Stapp [17] has made further suggestions along these lines in which the event is ultimately 
defined in consciousness.
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the first few moments and to start at a point at which space, time and ordinary sorts of 
field variable are definable in their usual way. The initial quantum state of this universe 
is described by some density matrix ρ. Mathematical elements describing more specific 
information are represented by operators O(t). They argue that it is sufficient to focus 
on projection operators P(t) representing properties that at the time t are either present 
or not. In this, their position is similar to that of Stapp [14], discussed in the previous 
section, who also introduced projection operators, P(en), in a similar role. Like Stapp, Gell-
Mann and Hartle consider time sequences of such projection operators, averaged over the 
initial density matrix of the universe. And like Stapp, they suggest a means of using these 
sequences to define a classical domain within the structure of Hilbert space. The main 
difference is that they develop their views more extensively and systematically, and show 
in more detail how such objectives might be realised. 

Stapp used projection operators corresponding to the quasi-classical co-herent states 
of a field oscillator in order to represent possible sequences, of what he called actual 
events. Gell-Mann and Hartle use a different kind of projection operator for essentially 
the same purpose. What they do is to consider any one of the fields that are supposed to be 
basic in physics, e.g., as with Stapp, the electromagnetic. Their essential step is to obtain 
a classically adequate description of these fields represented by generalised coordinates 
Qi(t), not by using coherent states, but rather, by simply ‘coarse-graining’ the field variables 
defined, for example, at any point in space and time. Such coarse-graining only restricts 
their field values to a certain range, and says nothing about the further details within this 
range.

To this end they introduce sets of projection operators  which are unity in a given 
range of field variables,  and zero outside, where a denotes the range under consideration 
and k the particular set. These projection operators are expressed in terms of a ‘square 
wave’ function of Qi(t) which is zero outside the range  and unity inside. We denote this 
by  The corresponding matrix representation of the projection operator is then

 
 

The whole set of projection operators is  If the total set of ranges, α, covers 
all possible values of the field variables, they call this set exhaustive. An exhaustive set 
evidently need not be a complete set of operators, indeed it may involve few of them.

They then go on to define sets of alternative histories. These consist of time sequences 
of exhaustive sets of alternative ranges,

 
 

Such sequences provide coarse-grained descriptions of a set of possible histories with 
coarse-graining of each actual event represented by  and with the whole set given by
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A set of alternative histories is then obtained by allowing α1…αn to vary over all possible 
values.

The extreme case of such a description is a completely fine-grained history which is 
specified by giving a complete set of operators at all times. This sort of history is used in 
Feynman’s treatment of quantum mechanics in terms of a sum over histories, which begins 
by specifying the amplitude in terms of a particular basis of generalised coordinates. Gell-
Mann and Hartle suggest for this basis, the set of all fundamental field variables at all 
points of space. This amplitude is

 
 

where S is the action function which is determined by the Hamiltonian H (or alternatively 
by the Lagrangian L).

14.5.2 Decohering histories

It is essential that completely fine-grained histories as defined in the previous section can-
not consistently be assigned probabilities. The reason is that to do this would be incompat-
ible with fundamental quantum mechanical properties such as two slit interference. It is the 
basic claim of Gell-Mann and Hartle that by suitably defining coarse-grained histories they 
can obtain a consistent attribution of probabilities.

The condition that two projection operators can represent two distinct possibilities for 
actual events is not only that they commute, but that their product P1·P2=0. Thus we might 
require for alternative histories [Pα′]·[Pα]=0. But if we start from this requirement taken 
rigorously, we can never hope to achieve what Gell-Mann and Hartle set out to do because 
this set of operators is much too restricted. Their essential starting point is to note that all 
that is required is to satisfy this condition for the actual intial state of the universe. Since by 
definition the universe cannot be in a state other than its actual one, we are not required to 
satisfy this condition for any other state. A sufficient condition for the decoherence of two 
alternative histories α′ and a may then be obtained by integrating the projection operators 
[Pα′], [Pα] with the density matrix of the universe. This will yield what we may call the 
decoherence functional Dα′α:

 
(14.6)

When the above is zero, the two sets of histories represented by α′ and α will then corre-
spond to two possible alternatives.

Gell-Man and Hartle argue however that even when Dα′α ≠0, but is small, it is still pos-
sible, consistently, to regard α and α′ as alternative histories. But if we do this, then the 
probability rules will only be approximately satisfied and the measure of the failure of the 
approximation will be indicated by the size of the off-diagonal elements. For example, in an 
arbitrary, but convenient way, we could define this measure more precisely as Tr[|D−Dd|

2] 
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where Dd is the diagonal part of Dα′α and the matrices should be thought of as on the space 
of very fine-grained histories. A set of coarse-grained histories can then be said to decohere 
to a certain degree of approximation when the off-diagonal elements of Dα′α are sufficiently 
small, i.e. when  

A further assumption is that under the above conditions the diagonal elements of Dα′α are 
approximately equal to the probabilities P([Pα]) of the corresponding histories, or

 
 

for each [Pα] in a set of approximate alternative histories.
To sum up then, the smallness of the off-diagonal elements is assumed to be the condi-

tion for a consistent assignment of approximate probabilities while the diagonal elements 
are assumed to give their approximate values.

14.5.3 On the meaning of decoherence

Gell-Mann and Hartle state that the (in general approximately) decoherent histories are 
what we may discuss in giving a meaning to quantum mechanics. As they further say

decoherence thus generalises and replaces the notion of ‘measurement’…. Decoher-
ence is a more precise, more objective, more observer independent idea…. We may 
assign probabilities to various values of reasonable scale density fluctuations in the 
early universe, whether or not anything like a ‘measurement’ was carried out on them 
and certainly whether or not there was an ‘observer’ to do it.

Measurements will then have to be seen as special cases of the universal process in which 
there is a ‘measurement situtation’ such that certain objective and observer independent 
events in a given history are correlated to others in a different history, taking place in what 
we somewhat conventionally call a measuring apparatus. We shall return to this question 
later, but for the present we re-emphasise that measurements and observations play no 
fundamental role in the formulation of this theory.

However, if this approach is to be carried out consistently, it is necessary to deal with 
a number of points that require clarification. To begin with, in principle, any set of projec-
tion operators might be thought of as suitable for defining decohering sets of alternative 
histories. (Indeed if the subsets are exactly orthogonal, one can exhibit sets of histories 
that are exactly decoherent.) Which, among all these sets, are the ones that correspond to a 
sequence of actual events? It is important that we do not assume sets of actual events that 
would imply a contradiction with the quantum theory in any domain in which it is known to 
apply. But if we can actually find a set of decoherent operators  that define reasonable 
histories then it is clear that within the approximations that are being used, no statistical 
results of the theory will be contradicted by the assumption that the  represent alterna-
tive possibilities of sequences of actual events. For such a contradiction would arise only 
if there were significant ‘interference properties’ between these sequences and these would 
imply coherence.
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This however raises the question of whether we can show that the theory actually 

implies sets of decoherent histories of the kind that we require. The decoherence functional 
depends, as has been seen, on the initial density matrix of the universe, ρ, but in addition 
it depends on the Hamiltonian H. For we have to follow the time-evolution of the operator 

 in the Heisenberg representation back to the time of the origin of the universe, using 
the formula

 
 

where  is the projection operator at the time t and  is the corresponding operator at 
the time t0.

In effect the above procedure suggests a possible answer to the basic question that was 
raised in the many-worlds interpretation, i.e. what determines the preferred basis for the 
various branches that are to be realised in the process of proliferation of the many uni-
verses? The new idea here is that it is the evolution of the universe from its initial condi-
tions which should provide this determination, and that this would remove an important 
ambiguity in the many-worlds approach.

It is clear that we cannot in the foreseeable future hope to carry out for the universe a 
calculation of all decohering sets of alternative histories. What Gell-Mann and Hartle do 
is to investigate specific illustrative examples of decoherence in more restrictive circum-
stances referring to the works of Joos and Zeh [19], Zurek [20] and Caldeira and Leggett 
[21] as well as Feynman and Vernon [22]. These authors investigate what is called dynamic 
decoherence, i.e. that which is brought about through the dynamic evolution of the quan-
tum state. All of them deal with simplified systems such as a single harmonic oscillator 
with coordinates x coupled to a large set of oscillators constituting an ‘environment’. The 
general result is that two histories corresponding to different trajectories, x(t) and x′(t), will 
decohere in very short times for typical situations such as having the ‘environmental’ oscil-
lators in an initial state of thermal equilibrium.

Gell-Mann and Hartle feel that these illustrative examples made it very plausible that 
decoherence will be widespread in the universe for the familiar ‘classical’ variables. For 
example this would explain why we do not see the track of a projectile spreading out into 
quantum superpositions in its orbit.

14.5.4 The quasi-classical world

Ordinarily when we use coarse-graining, we are introducing something dependent on a 
context related either to our sensory perceptions or to our instruments, communications or 
records, all of which are characterised by some kind of ignorance resulting in some incom-
plete specification of the system. Yet as Gell-Mann and Hartle say, we have the impression 
that the universe exhibits a finer grained, presumably objective and observer-independent, 
set of decohering histories. These should make possible the definition of what they call a 
quasi-classical world governed approximately by classical laws. (This may be compared 
with our manifest world discussed in chapter 8.)
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Gell-Mann and Hartle feel that this quasi-classical world should follow from the initial 
conditions of the universe and the Hamiltonian, with the aid of the projection operators 
that we have been discussing in the previous sections. To show this, they would like to find 
a way to make the question of the existence of a quasi-classical domain into a calculable 
question in quantum cosmology. For this they need criteria to measure how close a set of 
histories comes to constituting a quasi-classical domain. As they state in their article, they 
have not solved this problem to their satisfaction, but they discuss some ideas that they 
hope may contribute towards its solution.

To explain what Gell-Mann and Hartle have done in this regard, we note that their idea 
of a quasi-classical history is closely related to that of a broad wave packet in ordinary 
quantum mechanics. As is well known, the centre of such a packet follows the laws of 
classical physics, while the packet spreads out very slowly, so that it resembles some-
what a classical particle moving through space, at least for some time. However, Gell-
Mann and Hartle describe this process differently by means of a set of projection operators 

 For the simple case of a free particle, for example, it is easy to show that the 
product  is large only when  represents a coarse-grained region whose centre is 
displaced relative to that corresponding to  by p(t2−t1)/m (where p/m is the mean veloc-
ity of the wave packet as determined by the wave function of the system and ultimately 
by the density matrix of the universe). It is clear then that products like  will be 
large only for histories in which the centres of the regions concerned are located more or 
less along the classical trajectories implied by the initial wave packet.

What has been gained by this procedure is that we have the possibility of obtaining a 
definite sequence of actual events (defined within the range  in spite of the spread of the 
wave packets. However, what we in fact get is a whole set of possible sequences of actual 
events in which the probability will be large only for those sequences that are close to the 
classical trajectories.

It is along these lines that Gell-Mann and Hartle would like to show that one can con-
struct a whole quasi-classical world corresponding to such histories. But there are certain 
problems that must be faced in order to do this. First of all, as we have already remarked, it 
is necessary not to make the history so fine-grained that the assumption of their existence 
would significantly disagree with the predictions of the current quantum mechanics in the 
domain that the latter has found to be valid. This can be achieved by going to extremely 
coarse-grained projection operators, because, as is well known, such coarse graining will 
in general make off-diagonal elements of matrices such as Dα′α small. On the other hand, 
we must not have a graining so coarse that it does not define the classical domain to any 
significant extent. That is to say it must remain fine-grained enough to allow for a classical 
description that would not be lost in total ambiguity. So we have to assume that the degree 
of coarse graining is somehow objectively determinate at least within an order of magni-
tude as lying somewhere between the two extremes indicated above. This means, of course, 
that it is being assumed that quantum mechanics does break down when we reach this 
quasi-classical coarse-grained level. But we further assume that the point of breakdown is 
such that quantum mechanics holds for all practical purposes.

Gell-Mann and Hartle are not satisfied with assuming that there is a simple universal 
coarse graining that is fixed, the same for all circumstances. We can see a reason for 
this, for example, by considering that systems at high temperature can be given a much 
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more fine grained description than is possible for systems at low temperatures without 
introducing any practically observable deviations from the quantum laws. Gell-Mann and 
Hartle have therefore tried to find a universal function to express their criterion in such a 
way that it could adapt to all changing circumstances that could arise on various branches 
of the possible histories of the universe. To this end they considered various information 
theoretic measures of what they call the ‘classicity’ of a given domain, which they hope 
will ultimately yield the precise definition of a quasi-classical world as a whole.

However, as we have already pointed out, they do not feel that, as yet, they have solved 
this problem to their satisfaction. But even if they could solve it, it would still require a 
basic new assumption in their approach going beyond current quantum theory. For no 
matter how subtle and variable their criterion for classicity may turn out to be, it will 
still have to have some kind of scale factor that determines the actual degree of objective 
coarse graining of the classical world under any given set of circumstances. This world 
corresponds in some rough way to a similar assumption that has been made by GRW. For 
they too have to assume that quantum mechanics breaks down at some level, but in a way 
that is unimportant for all practical purposes.

This sort of requirement is also characteristic of all forms of the many-worlds 
interpretation as Deutsch [1] has indeed suggested. For in assuming a preferred basis in 
which the universe actually splits or in which the awareness of the observer similarly 
splits, they are inevitably implying a breakdown of the quantum theory, though this may be 
unimportant for all practical purposes.

14.5.5 Measurement and observation

As we have pointed out earlier, Gell-Mann and Hartle regard measurement as a special 
case of a general process in the universe. When a correlation exists between the ranges of 
values of two operators of a quasi-classical world, there is what they call a ‘measurement 
situation’. If the correlation has probability near unity, then the range of values of the one 
can be deduced from that of the other. All of this is, of course, objective and independent 
of the observer.

The above however discusses only measurements in the quasi-classical world. What 
about measurements of essentially quantum mechanical operators such as spin? Of 
course the spin states will not in general decohere by themselves. But in a measurement 
situation the different spin states are correlated with different classical histories. And 
these latter, of course, do decohere. The decoherence of the overall state will thus bring 
about the decoherence of the spin states that have been measured. This is very similar to 
what happens in our own interpretation, in which the non-overlap of the apparatus wave 
functions guarantees that there will be no interference between the spin states. In both cases 
the usual rules for probability will be recovered.

In the theory of Gell-Mann and Hartle, the observer is discussed in much the same way 
as was done in the Everett interpretation, except that all is now treated in a cosmological 
context. The observer’s memory, awareness, etc. should, in principle, be included in the 
density matrix of the universe and it should also have some representation in terms of 
operators in the quasi-classical world. However, it is not enough to consider what happens at 
a given moment or period of history. It is necessary to consider how a set of observers might 
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have evolved from the initial state of the universe. To discuss this question, Gell-Mann and 
Hartle refer to an observer as an “information gathering and utilising system (IGUS)”. They 
claim that such a system can in principle be treated in terms of quantum mechanics as these 
authors have formulated it. That is to say, in some form of approximation, no matter how 
crude, an IGUS is said to employ this form of quantum mechanics in a self-referential way.

The possibility of this is based on the assumption that memory content, and that to 
which it refers, are correlated by the laws of quantum theory as applied in this cosmological 
context. It is further assumed by the authors that these laws provide for the evolution of 
IGUSs in such a way that these latter can make predictions and draw further inferences 
about the probabilities of coarse-grained histories. It is argued that this capacity was 
maintained and developed because it was favourable to their survival.

The reason why IGUSs focus on decohering variables is that, at least within this theory, 
these are the only variables for which predictions can be made. In addition they focus on 
the histories of a quasi-classical world, because these present enough regularity over time 
to permit prediction by relatively rudimentary algorithms that are easily evolved. Gell-
Mann and Hartle thus effectively extend Darwinism and propose a possible basis for it in 
the laws of quantum mechanics.

If there are many significantly different quasi-classical worlds (as seems to be suggested 
in the many-universes point of view) one should better say that the IGUS evolves to exploit 
a particular quasi-classical world or a set of such worlds. This implies, of course, that the 
IGUS, including the human being, occupies no special place and plays no preferred role in 
the laws of physics. (This approach is in some sense closely related to certain forms of the 
anthropic principle [23].)

Bringing in the evolution of the IGUS plays a key part in how the theory of Gell-Mann 
and Hartle deals with measurement situations. For example, they consider the mutually 
exclusive character of simultaneous position and momentum measurements. What this 
means in their point of view is that the history in which an observer, as part of the universe, 
sets up a measurement correlation to the momentum, p, and one in which he does this for 
the position, q, are represented by two sets of decohering operators which are, however, 
mutually exclusive alternatives. (The decoherence is established by interacting with a 
thermal bath or with the 3°K background radiation or with something similar.) Since these 
are mutually exclusive alternative possibilities for the universe as a whole, only one of 
them can be realised at a time in the development of the universe. Or more precisely, only 
one of them can arise on a particular branch of the evolution of the universe as a whole. 
They say however that “the choice of branch may ultimately be traceable to a quantum 
fluctuation that sets in motion a chain of events leading to one measurement situation or the 
other. (Some have even suggested that the human subjective impression of free will may be 
traceable to statistical or quantum fluctuations.)”

To present these ideas more vividly, we may say that, according to this theory, the 
universe evolved first to give rise to matter, then to life, and ultimately to human beings 
along with their societies, sciences, measuring instruments etc. Eventually in this evolution 
there appeared a physicist who set up a momentum measuring device and established a 
correlation between the subsequent history of this process and the momentum of a quantum 
system at the time t. It seems inescapable that the physicist’s impression that he freely 
choose to set this measuring instrument up would have had to be illusory at least in terms 
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of this theory. For in this theory nothing whatsoever can happen unless it is part of the 
evolution of a suitable branch of the history of the universe as a whole. (Therefore we can 
see no reason why the authors have attributed this kind of conclusion to ‘some’ and have 
not stated what they themselves believe in this regard.)

Similar considerations may be applied to the EPR-type of experiment. For example, 
at some part of the evolution of the universe, there may arise a molecule of spin zero, 
constituted of two atoms of spin ħ/2, along with a physicist who sets up an instrument 
designed to disintegrate the molecule and to measure suitable components of the spins 
of the two atoms. The fact, for example, that he has apparently ‘chosen’ to measure the 
z-component of one of them was somehow implicit from the very early phases of the 
universe. Once this ‘choice’ began to unfold from the primeval explosion, then there could 
never be any question of what would happen if the universe had developed in such a way 
as to bring about a measurement of some other component of the spin.

Recall however that the paradoxical features of the EPR experiment arose because one 
assumed that before the measurement took place, it was always possible for the observer to 
‘choose’ an arbitrary component of the spin (see chapter 2). If this choice has no meaning 
then all the conclusions commonly drawn from the EPR experiment will not follow. For 
example, the same quantum fluctuation from which emerged the physicist’s choice to 
measure the z-component of the spin of one of the atoms, will also have given rise to the 
choice to measure a certain component of the spin of the second particle along with the 
correlation of the results of the two measurements. Or as Bell has put it, there is a complete 
‘rapport’ established at the very beginning of the universe between the net results and the 
total measurement situation including the physicists who set the experiment up and carry it 
out. Some people have called this sort of situation the denial of the counterfactual [24]. But 
what the theory of Gell-Mann and Hartle adds is an explanation showing why this denial 
follows necessarily from their model of the universe. 

14.5.6 Comparison with our approach

There are certain important similarities between our approach and that of Gell-Mann and 
Hartle, as well as, of course, important differences. One of the key similarities is that 
both approaches agree that the wave function (or the density matrix) is not a complete 
description of reality. Thus we bring in what we have called ‘beables’, which are either 
precisely defined particle trajectories or precisely defined motions of the field variables. 
Gell-Mann and Hartle bring in their coarse-grained projection operators out of which they 
construct sets of alternative histories. Let us recall that most of the unsatisfactory features 
of the conventional interpretation (which requires the complete linearity of the wave 
equation) arise from the assumption that the wave function (or the density matrix) provides 
a complete description of reality. It is this assumption that (in the context of linearity) 
requires us to postulate the collapse of the wave function with all its attendant paradoxical 
features, that have been discussed throughout the book. (Of course, if the wave equation is 
non-linear, as in the approach of GRW, paradox is avoided and the ‘collapse’ is explained 
in another way.)
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A second key similarity in the two approaches is that, in both of them, the classical world 
is explained as part of the overall quantum world rather than simply assumed. Without such 
a possibility, we have to suppose that the universe is split into two qualitatively distinct 
parts even though we also tacitly assume that somehow the properties of the classical world 
are determined in principle from the quantum laws. To treat the classical level as flowing 
out of the quantum laws is clearly necessary if we are to consider the universe as a single 
whole. For such a theory requires that the properties of matter at the classical level shall 
be implicit in the basic general laws which are actually quantum mechanical. In particular 
such an approach is evidently needed if we are to include the process of measurement itself 
within the theory in a coherent way.

The main difference in the two points of view is that we bring in the concept of actual 
beables, e.g. particles and fields, while Gell-Mann and Hartle introduce their coarse-
grained projection operators. A key point here is that although their projection operators 
are new concepts relative to the quantum theory in its current generally accepted form, they 
are nevertheless, as we have indicated earlier, still expressible as operators defined on a 
Hilbert space. On the other hand, our particle and field variables are not expressed as such 
operators in Hilbert space. Rather they are new concepts going outside this framework of 
Hilbert space altogether.

In our approach once we have assumed particle and field beables, no further fundamental 
assumptions are needed, nor as we have seen, are there serious problems involving the basic 
principles. Indeed even the probability assumption may be derived, as in chapter 9, either 
from the chaotic character of trajectories in the many-body system or from a stochastic 
process. The quasi-classical world (which in chapter 8 we have called the manifest world) 
comes out simply and naturally as that domain in which the quantum potential can be 
neglected. There, is no sharp break between the quantum world and the classical world, but 
only a continual increase in the ‘classicity’ of the behaviour, as we approach the domains 
in which the quantum potential becomes less and less important.

On the other hand in the approach of Gell-Mann and Hartle, the simple assumption that 
sequences of projection operators correspond to actual histories is not enough. In addition, 
as we have seen, one has to assume an objective limit to the degree of fine grainedness of 
these operators. And besides, there is still the unresolved problem for finding a functional 
form for this limit that is suitable for all circumstances.

A further conceptual unclarity of their approach is that the reality status of the wave 
function or the density matrix is, at best, highly ambiguous. It would seem from what they 
have written that everything that is actual and real is contained in the quasi-classical world. 
This seems strange because all the basic physical properties do in fact come out of the wave 
functions (or the density matrix). Should not this therefore be regarded as a key factor of 
reality (as indeed it is in our interpretation)?

This ambiguity in the reality status of the wave function (or density matrix) is in a way a 
residue of the separation of the quantum world of the wave function and the classical world 
of the measuring instrument that was originally assumed by von Neumann (see chapter 2). 
The basic role of the observing instrument is now replaced by a similar role of the coarse-
grained projection operators. Of course, the ambiguity in the cut between the measuring 
instrument and what is observed, has been removed because the latter has been given a 
universal significance (i.e. the universe contains a set of coarse-grained projection operators 
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that in effect are constantly carrying out ‘measurements’ in a unique and objective way). 
Nevertheless there still remains the fundamental split between the two kinds of reality 
which many would feel to be undesirable.

A further key point which we emphasise once again here, is that our approach has the 
advantage of being much more capable of being grasped intuitively and imaginatively than 
is that of Gell-Mann and Hartle.

As we pointed out in chapter 13, section 13.2, the view shared by most of the protago-
nists of the many-worlds point of view is that they make no further serious assumptions. 
This view seems to be based on the extremely high priority that they give to retaining 
Hilbert space as the basic set of terms for the expression of all concepts. As a result, all 
the other assumptions that we have detailed in the previous chapter and in this section of 
the present chapter, do not seem to be very important. We acknowledge the possible value 
of basing a theory solely on Hilbert space concepts and although we shall indeed explore 
such a theory in the next chapter, we still do not feel that Hilbert space has such advantages 
(e.g. beautiful symmetries) as to imply the necessity of giving this concept so overriding 
a value. It is in our view very important to keep the options open to allow the explanation 
of all approaches, as long as these have certain specific advantages such as those that have 
been outlined here in the exposition of our interpretation. In addition it should be kept in 
mind that such new approaches allow new forms of idea to be explored, some of which we 
shall discuss in the next section, as well as in the next chapter.

Finally we would like to call attention to a more subtle difference between our approach 
and that of Gell-Mann and Hartle. In our interpretation, it is always, in principle, possible 
that there may be a modification coming from outside the total framework that we consider. 
For example, in the EPR experiment we supposed the observer could arbitrarily choose 
to reorientate the apparatus while the atoms were separating. Let us recall that it is this 
assumption which originally made the EPR experiment seem paradoxical and which ulti-
mately led to the conclusion that there had to be a nonlocal connection between the atoms. 
In this case the modification might have been due to what has been called the ‘free will’ of 
the experimenter. But more generally, the central question here is not that of free will, but 
rather that of whether anything is possible that has a certain independence of the quantum 
mechanical framework which we are discussing. The assumption of free will would imply 
such a case of independence. But, of course, there could be all kinds of new levels of law, 
not only in physics but also, perhaps wherever life, mind, society etc. are involved. In other 
words, as we have brought out in section 14.2, there is no valid reason for assuming that all 
existence can be reduced to the laws of the quantum theory.

On the other hand, in the interpretation of Gell-Mann and Hartle it is, as we have seen, 
impossible for anything to happen that could not in principle be covered by some kind of 
extension of this theory based on the concept of Hilbert space plus the notion of the evolu-
tion of the universe that they have proposed. From this it follows that everything that could 
happen would, in principle, be implicit from the earliest phases of the universe. It is this 
feature that leads to the conclusion that nothing independent of the whole scheme can come 
in to alter the course of cosmic evolution (which latter leads even to the determination of 
the orientation of a piece of apparatus as something that was implicit in the quantum fluc-
tuations of the early universe). As we have seen it is this feature that removes nonlocality, 
but the cost is a closure of our thinking, which, in our view, has no ground in fact and which 
may limit the development of our ideas in a counterproductive way.
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14.6 Extension of our approach beyond the domain of current quantum theory

Thus far we have discussed a number of suggestions for ontological interpretations that go 
beyond the current quantum theory at least conceptually but nevertheless recover the latter 
as something that will be valid for all practical purposes. In this section we shall discuss 
some suggestions of our own in which we show how our proposals can also be extended 
beyond the current quantum theory. However, these extensions are not just purely con-
ceptual but we show how in principle they can lead in new domains to qualitatively new 
theories and correspondingly new experimental implications.

The chief difficulty in carrying out this sort of extension of our approach is that there 
is such a wealth of possibilities and such a dearth of experimental clues that might narrow 
them down. For example, in our basic equations for a trajectory of a particle,

 

 

it would be possible to bring in arbitrary forces, F, to obtain

 

 

as well as arbitrary additions, λ, to the guidance relations to yield

  

Any such changes could in principle fundamentally alter the consequences of the theory. 
Even though they might be chosen so that under conditions thus far investigated, the 
changes would be negligible for all practical purposes, the possibility would still be open 
that under new conditions these changes could no longer be neglected.

Other changes of this sort that might be considered would be to make the Schrödinger 
wave equation nonlinear and to introduce terms that would relate the Schrödinger wave 
function to the particle positions. (Again in such a way that significantly new results would 
follow only in new domains not yet investigated.) 

One way to make Schrödinger’s equation dependent on the particle positions (so 
that there would be a two-way relationship between wave and particle) can be seen by 
considering equation (14.1). In this equation, we can regard rn as the actual position of the 
nth particle. From the same arguments as apply to the GRW approach, it would follow that 
the overall wave function would tend to Collapse’ towards the actual particle positions, so 
that, in a large scale system, the empty wave packets of our interpretation would tend to 
disappear.

Without some kind of experimental clue, we are at a loss in this sort of situation as to 
how to proceed. However, there have been a number of cases in the history of physics in 
which theoretical questions provided useful clues long before experimental physics was 
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able to do so. A case in point is just the atomic theory of Democritus which we discussed 
earlier in chapter 2, section 2.8 as well as section 14.2 of this chapter.

The idea of Democritus was inspired by a consideration of a philosophical paradox in 
the very notion of movement, which was shown by Zeno and other members of the Eleatic 
school. They demonstrated logical inconsistencies, not only in the idea of movement itself, 
but also in the idea of an empty space in which movement could take place. From their 
demonstrations they concluded that only being is and that nonbeing is not, from which it 
followed that the concepts of becoming along with those of movement and empty space 
had no meaning.

Through contemplation of this paradox, Democritus was led to a resolution. He proposed 
that being was discontinuous in the form of distinct and separated atoms, each of which 
was an indivisible and eternal being. Democritus thus retained, in a certain restricted way, 
the Eleatic concept of being. But he then postulated that there was an empty space in 
which these atomic beings could move in such a way that the collective aspect of their 
motion then explained the large scale properties of apparently continuous matter with its 
continuous changes. On the other hand if we suppose that matter was truly continuous 
rather than only apparently so, then, as the Eleatics showed, there was no way in which its 
movement and transformation could have meaning.

One could, in principle, have seen at that time that the experimental detection of atoms 
depended basically on two related ways in which the laws of continuous matter could fail, 
firstly because atoms had a definite size and secondly because they had some non-zero free 
path between their successive collisions. These were, in fact, actually the ways in which the 
atomic theory was eventually verified experimentally.

Our proposed ontological explanation of the quantum theory has, as we have seen, 
also led to a certain paradox. For it implies nonlocality and this would seem to contradict 
relativity which is regarded as a theory that is equally as fundamental as quantum theory. 
But as we have seen in chapter 12, section 12.7, it is possible to propose a deeper theory 
of the individual quantum process which is not relativistically invariant and which 
nevertheless leads to Lorentz invariant consequences for all statistical results, as well as 
for the large scale manifest world. In this theory there is a preferred coordinate frame in 
which the instantaneous transmission of impulses is in principle possible, so that there is 
no contradiction with nonlocality for individual quantum processes. In other words, we say 
that underlying the level in which relativity is valid there is a subrelativistic level in which 
it is not valid even though relativity is recovered in a suitable statistical approximation as 
well as in the large scale manifest world.

In our discussion of this idea we have already suggested one way in which the theory 
might imply new experimental consequences. Thus, although there is no inherent limitation 
to the speed of transmission of impulses in this subrelativistic level, it is quite possible that 
quantum nonlocal connections might be propagated, not at infinite speeds, but at speeds 
very much greater than that of light. In this case, as explained in chapter 12, we could 
expect observable deviations from the predictions of the current quantum theory (e.g. by 
means of a kind of extension of the Aspect-type experiment).

It would seem then that already in this case a subrelativistic level would simultaneously 
be one that goes beyond the current quantum theory. But the notion of a general subquantum 
mechanical level would have to go beyond the current quantum theory in a much more 
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thoroughgoing way. To explore such a possibility it is useful to consider once again the 
stochastic form of our ontological approach. We recall that in this approach a particle follows 
a trajectory which is random, but which is modified by a suitable osmotic velocity along 
with the action of the quantum potential. At the level of Brownian motion of atoms, for 
example, similar random trajectories are regarded as approximations to actual trajectories 
in which this randomness does not prevail at indefinitely short distances. Rather there exists 
a characteristic length, the mean free path, below which simple causal laws begin to have a 
dominant effect. This free path reveals itself in many experiments, e.g. those of diffusion, 
conductivity of heat, etc. Similarly we may propose that in our theory there is a minimum 
free path below which the trajectory ceases to be random. As the atomic free path is the 
first sign of a ‘subcontinuous’ domain in which the laws of continuous matter would break 
down, so the free path in our trajectories would be the first sign of a subquantum domain in 
which the laws of quantum theory would break down. It is implied of course that this would 
begin to occur for wavelengths of the order of the ‘free path’.

The next sign of a breakdown of the quantum theory would be the discovery of some 
yet smaller dimension whose role might be analogous to the dimensions of an atom in the 
atomic explanation of continuous matter. We do not as yet know what this dimension is, 
but it seems reasonable to propose that it could be of the order of the Planck length, where, 
in any case, we can expect that our current ideas of space-time and quantum theory might 
well break down. The ‘free path’ would then be some multiple of this length.

At present further progress only seems to be possible through the use of the imagination 
to suggest new concepts that might permit a more precise formulation of these ideas. In this 
regard the situation is not very different from what it is in string theory, which is at present 
guided by speculative use of mathematical concepts, that also have little or no contact with 
experiment. As we have pointed out in section 12.8 of chapter 12, it took over 2000 years 
before the atomic theory of Democritus could achieve a more precise formulation. But we 
may reasonably hope that with the more rapid progress of science in the present era, it will 
take considerably less time.
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 Chapter 15  
Quantum theory and the implicate order

15.1 Introduction

Throughout this book we have thus far been concerned mainly with showing that a 
consistent ontological interpretation of the quantum theory as it now stands is possible. In 
the previous chapter, however, we raised the question of going beyond the current quantum 
theory and in the last section we sketched certain more definite proposals for doing this. 
These proposals however still involve introducing the concept of a particle, in addition 
to that of the wave function. As we pointed out there, this implies that we go outside the 
notion of expressing all basic concepts in terms of Hilbert space. In the present chapter we 
shall begin by exploring a new way of understanding the quantum theory and going beyond 
it which does not go out of Hilbert space. Nevertheless it does not set aside the work that 
we have done thus far, but rather it also includes the description of the particle trajectory 
within the framework of Hilbert space.

The basic idea is to introduce a new concept of order, which we call the implicate 
order or the enfolded order [1]. This is to be contrasted with our current concepts of order 
which are based on the ideas of Descartes who introduced coordinate systems precisely for 
the purpose of describing and representing order in physical process. The Cartesian grid 
(extended to curvilinear coordinates), which describes what is essentially a local order, 
has been the one constant feature of physics in all the fundamental changes that have 
happened over the past few centuries. In the quantum domain however this order shows 
its inadequacy, because physical properties cannot be attributed unambiguously to well-
defined structures and processes in space-time while remaining within Hilbert space. Thus, 
for example, the uncertainty principle implies that it is not in general possible to give 
a definite space-time order to the motion of a particle in its trajectory. The fact that we 
nevertheless still use Cartesian coordinates, then, leads to a certain difficulty in thinking 
clearly about the subject. As we pointed out in the previous chapter, this is generally avoided 
by sticking to the mathematical equations and by saying that, in theoretical physics, these 
latter are basically what we are talking about, so that unclarities in physical concepts need 
not disturb us.

What we are proposing here is that this disparity between physical concepts (e.g. 
particle, wave, position, momentum) and the implications of the mathematical equations 
arises because the physical concepts are inseparably involved with the Cartesian notion 
of order, and this violates the essential content of quantum mechanics. What we need is a 
notion of order for all our concepts, both physical and mathematical, which coheres with 
this content. In this chapter we shall explore how such coherence may be realised with the 
aid of the notion of the implicate order which will be developed here.

In some ways this step is similar to that taken in the development of relativity, which 
likewise introduced new notions of order, e.g. with regard to simultaneity and also with 
regard to curvilinear coordinates. In relativity however strict continuity and locality 
are still maintained. But in the implicate order even these will have to be recovered as 
approximations and limiting cases.
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15.2 Relativity and quantum theory as indicators of a new order for physics

It is generally agreed that neither special relativity nor general relativity have been united 
with quantum theory in a fully consistent way. To be sure we do have relativistic quantum 
field theory and with the aid of renormalisation techniques, this gives a wide range of 
correct predictions. Nevertheless the fact remains that strictly speaking the present theory 
implies various kinds of infinities and that the removal of these infinities by renormalisation 
algorithms is, logically considered, an arbitrary modification of the original basic principles. 
No new principles have been suggested up to the present that would lead to finite results. It 
is also very clear that general relativity introduces still further problems of principle which 
have not yet been resolved.

An important light can be thrown on these difficulties by noting that the basic orders 
implied in relativity theory and in quantum theory are qualitatively in complete contradiction. 
Thus relativity requires strict continuity, strict causality and strict locality in the order of 
the movement of particles and fields. And as we have seen throughout this book, in essence 
quantum mechanics implies the opposite. 

This kind of contradiction in basic concepts is reminiscent of the paradoxes (e.g. Zeno’s 
paradox) through which Democritus was led to the concept of the atom as explained in the 
previous chapter. Would it not be possible that the present contradiction between the basic 
concepts of relativity and quantum theory could similarly lead to a qualitatively new idea 
that would open the way to resolve all these difficulties?

As a clue to what this new idea might be, we could begin by asking, not what are the key 
differences between these concepts, but rather what they have in common. What they have 
in common is actually a quality of unbroken wholeness.

To see what this means, let us first consider relativity. As is well known the concept 
of a permanently existent particle is not consistent with this theory. But rather it is the 
point event in space-time that is the basic concept. In principle all structures have to be 
understood as forms in a generalised field which is a function of all the space-time points. 
In this sort of theory a particle has to be treated either as a singularity in the field, or as a 
stable pulse of finite extent. The field from each centre decreases with the distance, but it 
never goes to zero. Therefore ultimately the fields of all the particles will merge to form a 
single structure that is an unbroken whole.

The notion of unbroken wholeness is, however, still of limited applicability in the theory 
of relativity, because the basic concept is that of a point event which is distinct and separate 
from all other point events. In quantum theory however there is a much more thoroughgoing 
kind of unbroken wholeness. Thus even in the conventional interpretations, one talks 
of indivisible quantum processes that link different systems in an unanalysable way. In 
principle these links should extend to the whole universe, but for practical purposes their 
effects can be neglected on the large scale, so that in some suitable classical approximation 
we can use a simplified picture of the world as made up of separate parts in interaction. 
But in our interpretation there is also the fact that because the quantum potential represents 
active information, there is a nonlocal connection which can, in principle, make even distant 
objects into a single system which has an objective quality of unbroken wholeness.

In such a single system, the idea of separate point events clearly has no place. Yet as we 
have pointed out there is a certain residue of this notion still implicitly present in the fact 
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that ultimately all fields are defined in terms of space-time points. These points are put in 
order by means of a Cartesian grid (extended where necessary to curvilinear coordinates), 
and it is this order that makes it possible to define key concepts such as local interaction 
between fields and differential operators which play an essential role in expressing the 
movements of these fields. 

To sum up then, relativity and quantum theory share the notion of unbroken wholeness 
even though they achieve this in very different ways. As we have already explained in the 
previous section, we need a new notion of order that will encompass these different kinds 
of unbroken wholeness, which could open the way for new physical content that includes 
relativity and quantum theory but has the possibility of going beyond both.

15.3 Qualitative introduction to the implicate order

Our notions of order in physics have generally been tacit rather than explicit and have 
been manifested in particular forms which have developed gradually over the centuries 
in a somewhat fortuitous way. These latter have, in turn, come out of intuitive forms and 
common experience. For example, there is the order of numbers (which is in correspondence 
to that of points on a line), the order of successive positions in the motion of objects, 
various kinds of intensive order such as pressure, temperature, colour etc. Then there are 
more subtle orders such as the order of language, the order of logic, the order in music, the 
order of sensations and thought etc. Indeed the notion of order as a whole is not only vast, 
but it is also probably incapable of complete definition, if only because some kind of order 
is presupposed in everything we do, including, for example, the very act of defining order. 
How then can we proceed? The suggestion is that we can proceed as in fact has always been 
done, by beginning with our common intuitive notions and general experience of order and 
by letting these develop so as to extend into new domains and fields of application.

Our suggested next step is to explore how an order appropriate to wholeness can be found 
in our intuition and general experience. We begin by noting that the ordinary Cartesian 
order applying to separate points, finds one of its strongest supports in the function of a 
lens. What a lens does is to produce an approximate correspondence of points on an object 
to points on its image. The perception of this correspondence strongly brings our attention 
to the separate points. But as is well known, there is a new instrument used for making 
images called the hologram which does not do this. Rather each region of the hologram 
makes possible an image of the whole object. When we put all these regions together, we 
still obtain an image of the whole object, but one that is more sharply defined, as well as 
containing more points of view.

The hologram does not look like the object at all, but gives rise to an image only when it 
is suitably illuminated. The hologram seems, on cursory inspection, to have no significant 
order in it, and yet there must somehow be in it an order that determines the order of points 
that will appear in the image when it is illuminated. We may call this order implicit, but 
the basic root of the word implicit means ‘enfolded’. So in some sense, the whole object is 
enfolded in each part of the hologram rather than being in point-to-point correspondence. 
We may therefore say that each part of the hologram contains an enfolded order essentially 
similar to that of the object and yet obviously different in form.
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As we develop this idea, we shall see that this notion of enfoldment is not merely a 
metaphor, but that it has to be taken fairly literally. To emphasise this point, we shall there-
fore say that the order in the hologram is implicate. The order in the object, as well as in 
the image, will then be unfolded and we shall call it explicate. The process, in this case 
wave movement, in which this order is conveyed from the object to the hologram will be 
called enfoldment or implication. The process in which the order in the hologram becomes 
manifest to the viewer in an image will be called unfoldment or explication.

Enfoldment and unfoldment are actually encounted quite commonly in ordinary 
experience. For example, whenever one stands in a room, the order of the whole room 
is enfolded into each small region of space, and this includes the pupil of an eye which 
may happen to be there. This latter order is unfolded onto the retina and into the brain 
and nervous system, so as to give rise somehow to a conscious awareness of the order of 
the whole room. Similarly the order of the whole universe is enfolded into each region 
and may be picked up in various instruments, such as telescopes, from which they are 
ultimately unfolded to a conscious awareness of this order. The fact that light and other 
such processes are constantly enfolding and unfolding the whole is crucial for our ability 
to learn about any part of the universe of space and time, no matter where and when our 
observations may take place.

These notions of enfoldment and unfoldment can be understood in terms of the Cartesian 
order as being only particular cases of movements of fields not having the kind of general 
necessity that we would attribute, for example, to laws of nature. Rather what is significant 
for such laws of physics is considered to be the order of separate points. What we are 
proposing here is to turn this notion upside down and say that the implicate order will have 
the kind of general necessity that is suitable for expressing the basic laws of physics, while 
the explicate order will be important within this approach only as a particular case of the 
general order.

How can we justify such a radical change in our point of view? First of all we note that 
basically all the laws of movement in quantum mechanics do correspond to enfoldment and 
unfoldment. In particular, the relation between the wave function at one time ψ(x′, t′) and 
its form at another time, ψ(x, t), is determined by the propagator or the Green’s function, 
K(x−x′, t−t’) through the equation

 
(15.1)

The value of the wave function at x, t is the sum of contributions from the whole of x′ at 
the earlier time t′ weighted with the factor K(x−x′, t−t′). And so we may say that the region 
near x enfolds contributions from all over space at other times. Vice-versa, it follows that 
each region near x′ will unfold into the whole space x, with the weighting factor K(x−x′, 
t−t′). A simple picture of the movement is that waves from the whole space enfold into each 
region and that waves from each region unfold back into the whole space.

Of course the Green’s function has been derived ultimately from the Cartesian order by 
solving differential equations. But if we are questioning that this order holds fundamentally 
(especially at short distances), we may well adopt the point of view that the Green’s function 
is more basic than the differential equation (which latter will only be an approximation). In 
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this case the order of enfoldment and unfoldment will be fundamental, while the Cartesian 
order will have a relatively limited kind of significance.

The process of enfoldment and unfoldment was already well known implicitly in the 
Huygens’ construction. Waves from each point unfold. But at the same time waves from 
many points are enfolding to give rise to a new wave front. So in the totality, the one 
process includes both enfoldment and unfoldment. It is only when we focus on a part that 
we are led to talk of these as distinct.

The Huygens’ construction is actually the basis of the Feynman graphs which are widely 
used. To explain the connection, consider waves which start at a point P and arrive at a 
point Q (see figure 15.1). In the first interval of time, Δt, a possible path is from P to P′, 
and in the second interval from P′ to P″ and so on. Extending this construction, the path 
eventually arrives at Q. The Huygens’ construction implies that the waves that arrive at Q 
from P are built up of contributions from every possible path. These paths are the starting 
point of the well-known Feynman diagrams.

Originally Feynman [2] wanted to regard these paths as representing the actual trajectories 
of particles. But this would not be consistent, because contributions from various paths can 
interfere destructively as well as constructively. Rather, each path represents a contribution 
to the final field amplitude as implied by the Huygens’ construction. And together the 
whole set of paths describes a process of enfoldment of waves towards Q, or alternatively 
the unfoldment of waves from P.

Since all matter is now analysed in terms of quantum fields, and since the movements of 
all these fields are expressed in terms of propagators, it is implied by current physics that 
the implicate order is universal. These fields, which are now being treated as the ground of 
all existence, have to be understood as being essentially in movement. This is because the 
field cannot be said to be an entity which would persist (as a particle for example does) in 
a certain form over a period of time.

 
Figure 15.1: Huygens’ construction and classical paths
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Thus, for example, consider a field variable ψ(x, t) defined at the space-time point x, t. This has 
at most a purely momentary existence and may be said to vanish at the very moment at which it 
would come into being. Something with persistent identity would require a unique rela-
tion between ψ(x, t) and the field at other times. If, for example, we try to relate ψ(x, t) at 
O in figure 15.2 to ψ(x, t+δt) at A and thus define a persistent form of existence, we find 
that this leads to something quite arbitrary. For we could equally well have considered the same 
field point, O, in another Lorentz frame (x′, t′) and then related a ψ(x′, t′) to ψ(x′, t′+δt′) at 
B. This would evidently have defined a different entity. With a particle, the path is unique 
and we do not have this sort of arbitrariness. What this means is that the field itself cannot 
be regarded as having an identity. Or to put it differently, we can never have the same field 
point twice. Nor is there a unique form within the field that persists. Therefore all proper-
ties that are attributed to the field have to be understood as relationships in its movement. 

 

Figure 15.2: Non-uniqueness of fields in different Lorentz frames

We may suppose that the universe, which includes the whole of existence, contains not 
only all the fields that are now known, but also an indefinitely large set of further fields 
that are unknown and indeed may never be known in their totality. Recalling that the 
essential qualities of fields exist only in their movement we propose to call this ground 
the holo-movement. It follows that ultimately everything in the explicate order of common 
experience arises from the holomovement. Whatever persists with a constant form is 
sustained as the unfoldment of a recurrent and stable pattern which is constantly being 
renewed by enfoldment and dissolved by unfoldment. When the renewal ceases the form 
vanishes.

The notion of a permanently extant entity with a given identity, whether this be a particle 
or anything else, is therefore at best an approximation holding only in suitable limiting 
cases.
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15.4 Further illustrative example of the implicate order

We shall now give a further illustrative example involving a different form of the implicate 
order which helps us to focus our attention on general relationships that define such an 
order in more detail. This illustration is carried out with the aid of a device that we shall 
now describe. 

This device consists of two concentric glass cylinders; the outer cylinder is fixed, while 
the inner one is made to rotate slowly about its axis. In between the cylinders there is a 
viscous fluid, such as glycerine, and into this fluid is inserted a droplet of insoluble ink [3]. 
Let us now consider what happens to a small element of fluid as its inner radius moves 
faster than its outer radius. This element is slowly drawn out into a finer and finer thread. 
If there is ink in this element it will move with the fluid and will be drawn out together 
with it. What actually happens is that eventually the thread becomes so fine that the ink 
becomes invisible. However, if the inner cylinder is turned in the reverse direction, the 
parts of this thread will retrace their steps. (Because the viscosity is so high, diffusion can 
be neglected.) Eventually the whole thread comes together to reform the ink droplet and the 
latter suddenly emerges into view. If we continue to turn the cylinder in the same direction, 
it will be drawn out and become invisible once again.

When the ink droplet is drawn out, one is able to see no visible order in the fluid. Yet 
evidently there must be some order there since an arbitrary distribution of ink particles 
would not come back to a droplet. One can say that in some sense the ink droplet has been 
enfolded into the glycerine, from which it unfolds when the movement of the cylinder is 
reversed.

Of course if one were to analyse the movements of the ink particles in full detail, one 
would always see them following trajectories and therefore one could say that fundamentally 
the movement is described in an explicate order. Nevertheless within the context under 
discussion in which our perception does not follow the particles, we may say this device 
gives us an illustrative example of the implicate order. And from this we may be able to 
obtain some insight into how this order could be defined and developed.

Our next step is then to consider the enfoldment of a series of ink droplets. Suppose that 
the first ink droplet is enfolded by n turns and that the second droplet is then inserted at the 
same point to be enfolded an additional n turns. In this way we enfold a series of N droplets. 
In this series, the droplets will be enfolded n, 2n, 3n…Nn times respectively. Suppose then 
that the motion of the cylinder is reversed. These droplets will unfold and re-enfold one 
after another. If the cylinder is turned rapidly (the viscosity being high enough to prevent 
diffusion) it will appear that there is a single persistent droplet at the point in question. 
Nevertheless the droplet is as it were being constantly recreated and dissolved from a 
distribution of ink that is in some sense spread out over a whole range of fluid. We thus 
obtain an example of how forms that persist in the explicate order can arise from the whole 
background and be sustained dynamically by a movement of enfoldment and unfoldment.

If we suppose that these successive ink droplets are inserted at slightly different positions, 
then we will obtain what appears to be a moving ink droplet. The different rates of ‘motion’ 
correspond to different enfolded distributions of ink in the whole fluid. In a sense the 
‘movement’ of the ink droplet is ‘guided’ by a general field of enfoldment belonging to 
the whole fluid. The attribution of this guidance to the particular place where the droplet 
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emerges is not appropriate. Rather its behaviour is basically global in origin. This clearly 
can be proposed as a model of a quantum ‘particle’ which might be assumed to underlie 
the sort of particles that we have postulated in our interpretation of the quantum theory. Of 
course, this model is rather crude and simple, but later on we shall propose a similar one 
that we can take more seriously.

For the present, however, let us continue with this model. Suppose that we consider two 
particles initially at different positions, one represented by red ink and the other by blue 
ink. As we enfold these into the fluid, red ink particles and blue ink particles will eventually 
intermingle, so that in a given region we could not say that the ink droplets were really 
separate. Nevertheless when the cylinder was turned back, red and blue ink particles would 
begin to separate to form respectively red and blue droplets. It is clear that the ground of 
the particular behaviour of the visible droplets is global and that disturbances in this ground 
can lead to correlated changes in this behaviour.

In our model the appearance in perception of what seems to be a pair of separate ink 
droplets can therefore be deceiving. Actually these apparently separate ink droplets are 
internally related to each other. On the other hand, as conceived in the explicate order, such 
droplets would only be externally related. This is one of the most important new features of 
the implicate order. What may be suggested is that this feature may give further insight into 
the meaning of quantum properties such as mutual participation and nonlocality.

Another instructive illustration of the implicate order can be obtained by first considering 
the successive enfoldment of N droplets with the cylinder turning in a certain direction 
and successive droplets at a constant distance from each other. After these N droplets are 
enfolded the movement of the cylinder is reversed to enfold additional S droplets at the 
same distance from each other as in the first set. After that we turn the cylinder in the 
original direction and then enfold an indefinite number of further droplets in a similar way. 
When the cylinder is turned backwards we will then find a droplet moving as before. But as 
shown in figure 15.3, at the point P there will suddenly appear a pair of particles ‘moving’ 
in opposite directions and one of these will proceed to meet the original particle at the 
point Q. They then appear to annihilate each other and nothing is left of them thereafter. 
However, the other member of the original ‘pair’ will proceed onwards.

 

Figure 15.3: Enfoldment and pair creation
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It seems that we have here a simple model of pair production and annihilation. But unlike 
the representation given in Feynman diagrams, we do not say that anything ‘moves’ back-
ward in the time. Rather it is clear that what is significant here is the order in the degree of 
implication.

To bring out what this means, let us define an implication parameter,  of a droplet, 
which is proportional to the number of times the cylinder has been turned since that droplet 
was inserted. This implication parameter takes negative values when the cylinder is turned 
in the opposite direction. What happens in this example is that the implication parameter 
has a part that increases, another part in which it decreases and a third part in which it 
increases again. The entire pattern is present at each instant in the whole fluid with varying 
degrees of implication. All that happens with the passage of time is a change in the implica-
tion parameter which may be positive or negative.

What this suggests is that what is called the time coordinate in the Feynman’s approach 
may actually be the degree of implication. In this interpretation, Feynman diagrams would 
not refer to actual processes but rather to structures in the implicate order. The meaning of 
time would have to be something different from  but nevertheless related to it. 

15.5 On the distinction between implicate and explicate orders

We have thus far used the distinction between implicate and explicate orders rather loosely. 
We shall now discuss this distinction in a more precise way.

To begin with, we might consider a form whose elements were made of ink droplets 
of various colours. A simple form might be a line defined by droplets at its endpoints, or 
a triangle defined by droplets at its vertices. Alternatively we could represent this line by 
a smooth thread of ink and a point by a droplet, or various other representations could be 
adopted.

What is characteristic of an explicate structure is that all its basic parts are separate and 
distinct and outside of each other, although they may be in well-defined relationships. For 
example, consider a two-dimensional square grid made up of points and the lines which 
connect them. The points are on the boundaries of the lines. Moreover each point has a 
definite set of four neighbours. It is clear that these requirements define the basic order of 
the grid which is clearly explicate in the sense defined above.

However, it is not necessary that an explicate order be equivalent to a square lattice. 
Indeed in section 15.10 we give a more precise mathematical definition of an explicate 
order through what we call a contact matrix Cij which enables us to consider not only arbi-
trary lattices but also irregular structures such as dislocated crystals and glasses.

Let us now return to our example of the grid. We may imagine that this grid is enfolded 
by a certain movement of the cylinder. Nevertheless when the cylinder is reversed all the 
parts will unfold in such a way that they come out all together again in the same explicate 
structure. This follows because all the parts have the same implication parameter. What this 
means is that this whole set of parts retains this potential for being explicate together even 
when it has been enfolded. Therefore within the implicate order, there can be structures that 
are essentially explicate, even though they are still enfolded.
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On the other hand there may be structures that are intrinsically implicate in the sense 
that the whole cannot be unfolded together in one single explicate order. The case of the 
enfoldment of successive droplets is an example of this. For only one of the droplets can 
be unfolded at a time.

The general case is one in which there is a succession of explicate structures enfolded 
to make up what is basically an intrinsically implicate order. However, this latter contains 
explicate suborders as aspects which are particular cases of the general notion of the impli-
cate order. In this way we clarify our earlier statement that the implicate order is general 
and necessary, while explicate orders are particular and contingent cases of this.

What then is the relationship between the notion of explicate order and that of the mani-
fest world discussed in chapter 8, section 8.6? Clearly the manifest world of common 
sense experience refined where necessary with the aid of the concepts and laws of classical 
physics is basically in an explicate order. But the motion of particles at the quantum level 
is evidently also in an explicate order. However, as we have suggested in chapter 8, this lat-
ter order is not always at the manifest level because it is profoundly affected by the active 
information represented by the quantum potential. This latter operates in a subtle way and 
according to what has been said in this chapter, this operation is in an implicate order. 
Therefore the particle movement is not understood fully as self-determined in the explicate 
order in which it is described. Rather, this explicate order reveals the deeper implicate 
order underlying its behaviour.

The movement of the beables becomes manifest only at the large scale level under 
conditions in which the quantum potential can be neglected. In this case the movement is 
not only describable in an explicate way, but it can be approximated as self-determined in 
the same explicate order that we use to describe it. Therefore it is essentially independent 
of the implicate order and can be abstracted as existing on its own. It is therefore capable 
of being ‘grasped in the hand’ without fundamental alteration (whereas at the micro-level, 
the movement of particles is not). Nevertheless, as we have seen in chapter 8, the implicate 
order is still revealed in the manifest world in some of the more subtle relationships that 
arise in experiments at a quantum level of accuracy (e.g. interference experiments).

15.6 More general notion of order

At this point we need to develop a more general notion of what is to be meant by order, at 
least within the context under discussion. To illustrate the notion that we are suggesting, 
we begin with the straight line divided into equal segments. What characterises the order 
of this line is that the differences of successive segments remain similar (and indeed equal) 
throughout the whole line. The difference is just that each line is displaced by its own 
length relative to the one before.

We may extend this suggestion to discuss the order of curves. For example, if we 
approximate a circle by a polygon of many sides, we see that the differences of successive sides 
is that not only are they displaced relative to each other, but that they have different angles. 
It is clear however that the successive differences are similar and that this is what makes the 
curve a circle. If successive elements also turned into a third dimension, we would then get 
a helix resulting from the similar differences. And more generally, one could complicate 
this construction to produce curves of arbitrary complexity (see Bohm and Peat [4]).
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The next step is to consider the differences that are possible between such similarities. 
For example, we may arrange a set of lines in parallel. Each of these has a set of similar 
differences, but then each line is determined by a different set of such similar differences. If 
the lines are equidistant, these differences in the similarities in turn constitute a higher order 
of similar differences. If we then consider an additional set of such lines perpendicular to 
the first, the entire arrangement would have a set of similarities that were different from 
those in the first set.

If we go on to consider a series of such sets of lines, each having a small angle θ relative 
to the preceding one, we obtain a set of similar differences (of the similarities in each set), 
and clearly this defines an order of orientations of all these successive arrangements.

It is clear from all this that one can have an indefinitely extending hierarchy of similar 
differences and different similarities of these differences, constituting what may be 
called an order of orders. If these orders have points of contact (e.g. as there are between 
perpendicular sets of lines in a grid) we may say they begin to form a structure.

This treatment of order in terms of similar differences and different similarities appears 
to be broad enough not only to cover all the orders found thus far in physics, but it seems 
to be valid in much broader areas of experience. For example, an order of colours can be 
expressed as similar differences, as can an order of musical tones. The musical theme can 
clearly be seen in terms of similar differences and different similarities in patterns of notes, 
going on all the way up to the order that can be found in highly organised compositions. 
Similar (but different) orders can also be seen in thoughts, which often develop in patterns 
of similar differences and different similarities.

15.7 The algebra of the implicate order

The implicate order finds a natural mathematical expression in terms of certain kinds of 
algebra. We shall first illustrate this in terms of the ink droplet model and then go on to 
extend our treatment to the algebras of quantum mechanics.

If we start from any initial distribution of ink represented by some density function ρ0 
(e.g. such as an ink droplet) then after the cylinder has been turned a certain number of 
times, we will obtain a distribution

 (15.2)

where T is an operator that represents the transformation brought about by this process. If 
we apply a similar transformation again, we obtain ρ2=T2ρ0 and if we apply it n times, we 
obtain

 (15.3)

The above makes possible a simple mathematical description of the implicate order because 
it embodies the feature that the differences of successive elements, i.e. the transformation 
T, remain similar.
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If we now consider the whole succession of droplets, we have to add up the contribu-
tions corresponding to the different values of n. We obtain

 
(15.4)

But in principle we could have put in each droplet with a different density (an). This would 
have given us

 
(15.5)

In this way we obtain an algebra of transformations because each term in the algebra, 
T=∑anTn, can be added to any other term and because clearly transformations can be 
multiplied. It is evident that by setting n=0 we obtain the unit element T0, which simply 
represents no transformation at all.

Let us now go on to discuss the quantum theory. We have already seen that the basic 
notion in the quantum theory expressed through Green’s functions can be understood as a 
form of the implicate order. Thus we may write for the transformation between two times

 (15.6)

Here T will, in general, be complex. Successive transformations through n steps with 
similar differences can then be expressed as Tn, so that we obtain

 (15.7)

Because of the linearity of the wave equation, we can, in general, add transformations with 
suitable coefficients to obtain new solutions of the wave equation. Thus we could have

 (15.8)

But the possibilities are much richer than this because we could bring in transformations 
that do not commute. For example, if TA and TB are two such transformations we could 
have 

 (15.9)

as well as more complex combinations. It is clear that at least abstractly we can form an 
algebra in this way.

Thus far we have given only the algebra of transformations, which in quantum 
mechanics is called the Heisenberg algebra (see Frescura and Hiley [5, 6]). This algebra 
can be completed by bringing in a projection operator P(x, x′). In this way, as we shall see, 
we can tie up with the ideas of Stapp [7] and Gell-Mann and Hartle [8].
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To simplify the discussion, let us consider an operator Pt(x0, Δx0) which at a given time 
t projects out everything but a cubic region of size Δx0 centred at the point x0. At any other 
time, this operator has the form

 (15.10)

where  is the Green’s function between t′ and t.
Let us now give a more detailed expression for Pt. We write

 (15.11)

where ψx0(x) is a wave function that is constant in a region of size Δx0, centred at x0 and 
zero outside. Clearly this wave function defines the projection operator that we want. We 
then obtain

 (15.12)

It is evident that the mere fact that we have an algebra is what enables us to express the 
properties of quantum interference. Such interference is not described by adding projection 
operators. Rather to do this corresponds to what is called forming a mixed state. Quantum 
interference is implied by a further property of the algebra, not present in algebras of the 
type that describe the ink drop model. This new property involves linear superposition over 
both indices of the projection operators, x′ and x, separately. Operations carried out on 
each one of these correspond to what are called, in mathematical terms, ideals [6]. Opera-
tions from the left generate a left ideal, while those from the right generate a right ideal. 
Transformations of projection operators such as (15.10) involve both ideals together in a 
symmetric way.

It is clear that the new projection operators at the time t′ can be written as

 (15.13)

so that what was initially a ‘pure state’ remains so after transformation. This means that 
the law of motion does not involve the superposition of projection operators, but rather, 
the superposition on the left and right ideals which imply contributions to the wave func-
tions ψt′(x′)ψt′(x). Evidently it is this feature that makes possible the properties of quantum 
interference. For example, if the wave functions in (15.11) correspond to wave packets of 
width Δx0, these will start to spread, at first slowly, and then more rapidly when t′−t is posi-
tive. Sooner or later wave functions from packets that were originally in different regions 
will overlap and then we will have interference. On the other hand when t′−t is negative, 
we can look at this situation as a packet which was originally spread out and which then 
converges to the region (x0, Δx0). In this case all the parts of the original packet ultimately 
come together and interfere to produce a wave function that is constant in the region (x0, 
Δx0) and zero outside.
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If we recall the description relating the Green’s function to the implicate order in section 
15.3, we can see that the projection operators of Stapp and Gell-Mann and Hartle really 
develop according to the implicate order. An operator which corresponds to a well-defined 
region at the time t, corresponds to an enfoldment of this region at all other times. Their 
histories are therefore, in a sense, always present at any moment. But at any given time, t, 
only some are unfolded. It is evident that the effective assumption of these authors is that 
any event is actual only at the moment at which it is unfolded. Nevertheless it is always 
present whether unfolded or not.

In our example we have thus far been thinking of the wave function of a single particle. 
But suppose that there are many particles. At the time t=0 we should then write the 
projection operator of the nth particle as

 (15.14)

Here  and 1n operate on all the particles other than n and where  operates on the left 
ideal and 1n operates on the right ideal.

When the above is transformed by the Green’s function, not only will the wave packet 
spread out as in the one-particle case, but it will start to entangle with all the other particles. 
So we have an implicate order in the whole configuration space of the N particles. For times 
in the distant past, the whole universe is thus in some way correlated in its enfoldments. 
As time passes, these correlations begin to disentangle and the wave functions begin to 
converge on the region  belonging to the nth particle while it becomes a con-
stant as a function of the coordinates of the other particles. After this the spreading and 
re-enfoldment process starts to take place again.

An important point here is that if there is sufficient entanglement, then sooner or later, 
 will begin to approach commutation with  In the models of Stapp and Gell-Mann 

and Hartle, it will therefore be consistent to assume that projection operators at moderately 
different times will cor-respond to mutually compatible actual events. This will make it 
possible to give the history a real content as objective and independent of observers.

15.8 A Hilbert space model of the trajectories in our interpretation of 
mechanics

We are now ready to extend the model of a particle in our interpretation so that it can be 
included within the framework of Hilbert space. We shall see that this model has certain 
similarities with the models of Stapp and Gell-Mann and Hartle, though there are important 
differences that we shall bring out as we go along.

We shall begin by returning to our ink droplet model of a particle as given in section 
15.4. We can now relate this to the extension of our approach beyond the domain of 
current quantum theory as suggested in chapter 14, section 14.6. We proposed there that 
the stochastic trajectories in our interpretation can be thought of as arising from some 
random process with a certain free ‘flight-time’ that is related to the Planck time. So what 
we now suggest is to give up the idea that the particle has a continuous existence and to 

quantum 
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suppose instead that it is more like our ink droplet model, which is continually unfolding 
and re-enfolding. The time between these processes should be of the order of this mean 
free time.

Successive ‘droplets’ will have a random distribution. However, there will be a systematic 
trend in this distribution, so that the differences δxn in successive positions will imply a 
systematic average drift velocity, as well as an osmotic velocity. This will have to be such 
as to correspond to the velocities assumed in our stochastic model given in chapter 12.

This model has certain features that are qualitatively right, but it does not readily fit in 
with quantum mechanical concepts. We therefore now propose a further new idea. This is 
to replace the converging and diverging droplets by converging and diverging quantum 
mechanical waves. In this way our concept of the particle is now included within the 
implicate order as a particular form in Hilbert space.

To see what the similarities are between our model and that of Stapp and Gell-Mann and 
Hartle, let us recall that as shown in the previous section 15.7, the projection operators of 
Gell-Mann and Hartle [8] are also particular cases of the implicate order. The key difference 
is this. Their projection operators correspond to waves that converge on extended regions 
and then diverge. On the other hand, ours converge to a point and then diverge. To see how 
the two approaches are related, we can consider a projection operator P(x0, Δx) and let the 
range of Δx approach zero. It is clear that both sets of operators are contained within this 
framework. 

Gell-Mann and Hartle propose actual histories which consist of a sequence of projection 
operators P(x0, Δx), in which Δx is large enough to describe an essentially classical-type 
development of actual events. Our proposal is to consider a sequence of actual events 
forming a ‘trajectory’ which is essentially quantum mechanical. So in some sense we have 
quantum mechanical histories and they have classical histories. The advantages of our 
approach have been discussed earlier throughout this book, but here we recall two of them. 
First there is no sharp distinction of classical and quantum levels. The classical level arises 
naturally without further assumptions in a gradual way as the quantum potential becomes 
negligible. On the other hand, in the approach of Gell-Mann and Hartle, we have simply 
to assume such a distinction of classical and quantum levels without having, as yet, a 
clear criterion for what are the limits of the classical level. Secondly our approach gives 
a simple and fairly clear account of quantum processes as well as providing an intuitive 
understanding of all the transformations of the theory in terms of the implicate order. On 
the other hand, in their approach, the individual quantum process cannot be described and 
therefore there is no intuitive understanding of what it means.

The dependence of the points to which the various successive waves converge on 
some sort of systematic drift velocity and osmotic velocity provides an explanation of the 
‘inertia’ of the particle. It is this dependence which also guarantees that a particle will not 
enter a region of zero wave function and will not leave its channel once it enters. In this 
way definite results can be preserved at the manifest level which includes the observable 
outcomes of measurements.

The notion of a particle with permanent identity has now been replaced by that of a 
particle with no permanent identity. Rather its basic ‘elements’ are constantly forming 
and dissolving in succession. Over times much longer than that between successive wave 
formations, the whole process approximates a trajectory (which may however be engaged 
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in a stochastic process). For shorter times the notion of a trajectory dissolves away and 
some entirely new concepts will be needed which we shall discuss. (Further on, we shall 
give an example of these in terms of incoming and outgoing waves.)

15.9 An example of trajectories arising from wave structures

In order to illustrate the ideas developed in the previous section we shall now give a spe-
cific example of trajectories arising from wave structures. To simplify the discussion, we 
consider a particle always moving at the speed of light but with stochastic variations in 
direction so that we have a kind of zigzag path in space-time whose mean velocity will 
evidently be less than c. When we go over to the wave model, the end points of each line 
of the zigzag will be the points towards which our waves converge and from which they 
then diverge. It seems natural to assume that these waves also move at the speed of light 
so that to each point P of convergence and divergence there is an incoming and outgoing 
light cone. The trajectories in question will then correspond to a suitable sequence of such 
light cones.

This sort of structure of trajectories can be clarified with the aid of the theory of the 
higher spherical geometry of Lie and Klein (see Klein [9]). To relate the light cones to this 
geometry, we first consider any convenient hyperplane, say t=0. Each light cone intersects 
this hyperplane in a sphere. Those light cones whose vertices have t<0 will be defined to 
produce spheres of positive radius r=t. The light cones whose vertices have t>0 will also 
produce spheres but these will be assigned negative radii. So there is a 1:1 correspondence 
between light cones and their intersections with any hyperplane t=const.

What Lie and Klein proposed was an interesting way of parameterising these spheres. 
To obtain their parameterisation, let us first write the equation of a sphere

(x−a)2+(y−b)2+(z−c)2=r2,  (15.15)

where the coordinates of the centre are (a, b, c) and the radius is r. Equation (15.15) reduces to

x2+y2+z2−2(ax+by+cz)=r2−a2−b2−c2.   (15.16)

We now regard this sphere as parameterised by the five quantities a= x1, b=x2, c=x3, r=−x4 
and ξ. But these parameters are related by

 (15.17)

We introduce homogeneous coordinates by writing
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and

 

 

The condition (15.17) reduces to

 (15.18)

The six parameters we have introduced in addition to equation (15.18) now parameterise 
the sphere. 

 

Figure 15.4: Light cones on one light ray yx

The advantage of this parameterisation is that the conformal invariance of the description 
is now evident. For equation (15.18) implies the invariance to six dimensional pseudo-
orthogonal transformations which are easily seen to be isomorphic to the conformal group. 
By distinguishing a light cone at infinity, we can reduce this to the Poincaré group and this 
may be for example done by defining this light cone through the relationship

X6+X5=0.  (15.19)

One can readily show that the condition for two spheres to come into contact, i.e. to touch 
each other at single point and have a common tangent plane, is

 (15.20)  
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where X and Y refer respectively to the spheres in question. One can also see that if two 
spheres are in contact, then the vertices of their corresponding light cones are connected by 
a null ray (see figure 15.4). We now proceed to show how the trajectories are described in 
terms of these spheres. First of all consider a sphere of radius r corresponding to a light cone 
whose vertex is in the future at t=r. Now consider a sphere of radius r′<r corresponding 
to a light cone with vertex at t=r′. Suppose the two spheres are to be in contact as shown 
in figure 15.5. Between them lie other spheres with the same point of contact P and with 
intermediate radii. All of these correspond to light cones with a null ray in common. But 
further spheres of larger radii lie beyond the outer sphere going to a sphere of infinite radius 
which represents a plane wave. Beyond this lie spheres of negative radii corresponding to 
the light cones whose vertices have negative values of t (see figure 15.6). As the radius 
approaches zero from either positive or negative direction, we approach the point P. So a 
point is a sphere of zero radius.

 

Figure 15.5: Light ray as point of contact, P, of spheres

Let us now consider our trajectory starting from a sphere of zero radius representing a light 
cone with vertex at t=0. The first step in our trajectory (see figure 15.7) is represented by 
the point of contact P and a sphere of radius r. The corresponding null ray is in the direction 
of the radius of the sphere at the point P. The next null ray will be represented by a larger 
sphere contacting the first sphere at the point Q. The next null ray will correspond to a still 
larger sphere contacting the second sphere at yet another point R. This procedure is to be 
continued indefinitely so that we obtain a complete description of the zigzag trajectory.

The key point here is that we have described our trajectory entirely in terms of wave 
forms at any given time. It is easy to show that this description is conformally invariant. 
For every transformation that must turn spheres into spheres (and if we restrict ourselves 
to satisfying (15.19), we will have only Poincaré invariance). But now we can see the 
meaning of these transformations without explicit reference to time. For example in a time 
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displacement, Δt, the radius of each sphere changes by Δt. In a Lorentz transformation, 
however, the radii and centres change together so that initially concentric spheres cease to 
be concentric.

 

Figure 15.6: Illustration of spheres with positive and negative radii

From what we have been saying, it follows that our trajectory is now described in an impli-
cate order. As this order unfolds in time, the radii of the spheres corresponding to incoming 
waves decrease while those corresponding to outgoing waves increase. The entire trajec-
tory is now shown as a kind of enfolded geometric structure whose meaning can be seen all 
at once as a ‘chain’ of successively contacting spheres. The law of development is implicit 
in this structure.

This way of looking at the subject is close to what is implied by Feynman’s approach 
as well as to the Huygens principle. Feynman [2] describes his trajectories as a sequence 
of points in time. We describe them as sequences of spheres all enfolded at a given time. 
The Lagrangian is thus, in our approach, a property of the implicate order which holds 
at any given moment. And as seen in section 15.8, backward tracks in time are replaced 
by tracks in which the implication parameter is decreasing. In our model, the implication 
parameter is just the radius of the sphere. Thus in figure 15.6, we could have the radii of 
spheres decrease for a while and then increase again. As explained in the previous section, 
this corresponds to pair production. But now there is no need to have the mysterious notion 
of backward motion in time.
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Figure 15.7: Trajectory in terms of spheres

The above is a very simple model of the particle in terms of the implicate order. Much more 
complex models can evidently be developed using, for example, spinors and twistors, but 
to do this would take us too far outside the scope of this book.

15.10 Pre-space and the implicate order

In the previous two sections we have proposed how the notion of a continuous trajectory 
can be replaced by that of a succession of waves, each converging to a point, and how this 
succession can be seen as a structure in the implicate order. However, the equivalence of 
this model to a particle is limited. Because for times shorter than that between successive 
waves, the idea of a particle is no longer relevant.

It seems natural to suppose that, as we have suggested earlier, the critical time in this 
regard is the Planck time. For such intervals the ordinary notions of space-time and the 
structure of matter will in any case probably break down because of quantum fluctuations 
of the metrical field. Indeed the notion of measurability of space-time in the usual way 
could hardly be expected to be applicable under such conditions. Rather we may anticipate 
that the implicate order would become the dominant and fundamental concept here.

We have thus far seen throughout this book how it is possible, not only for the manifest 
level of ordinary experience, but also the quantum level underlying it, to emerge from a still 
deeper implicate level in which the classical Cartesian notions of form, order and structure 
have more or less dissolved. Indeed it was implicit in the previous two sections that such 
ideas, underlying our classical notions of space-time and measure, would have to arise as 
limiting cases of this deeper implicate order. In many ways this suggestion is close to one 
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that has been under consideration recently by physicists, i.e. that of ‘pre-space’ [10]. The 
difference is that we want to go much further than has generally been contemplated in the 
discussion of pre-space and to propose more definite lines along which we could actually 
enquire into developing an overall mathematical formulation of these ideas.

We have space in this book only for a brief sketch of our proposals. A number of 
preliminary papers on this subject have already been published [11, 12] and further work 
is proceeding.

The principal current difficulty in the attempt to make theoretical physics coherent is 
the notion of a mathematical point in space-time without extension or duration. This has 
been very useful as an abstraction, but we feel that there is a great deal of evidence (some 
of which we have discussed in this book) that this notion has reached its limits of validity 
and usefulness. The idea of beginning with an extended region has indeed been long in 
the air and has been explored by many people [13]. Indeed both Stapp [7] and Gell-Mann 
and Hartle [8] have at least implicitly begun with this notion by considering projection 
operators that cover regions.

As a point of departure let us therefore begin by considering integrals of fields over 
regions. These may be the ordinary fields, like the electromagnetic field, or they may be 
quantum fields represented by the wave function. To simplify the discussion we restrict 
ourselves to a set of scalar fields  Let  denote any particular total configuration of the 
field. Different values of the index p then denote different total configurations. We further 
consider a set of regions Ri and we define the integral of  over such a region as

 
(15.21)

The above types of integral have been extensively studied in algebraic topology [14] and 
they are called p-sets. These p-sets may include integrals of vectors, tensors etc. over regions 
of various dimensionalities. One of the main concepts of the theory is that these p-sets can 
be put together to describe the composition of regions into larger regions and that this can 
be comprehended within an appropriate algebra. In this algebra, boundary relationships 
can be expressed as a discrete structure of matrix elements and the entire content of typical 
physical equations (such as Laplace’s equation, Maxwell’s equations, etc.) can be replaced 
by purely algebraic relationships among the p-sets. All of this has been done classically, but 
we are now exploring how this can be extended to a quantum context.

The crucial point that is relevant for our purposes is that these algebraic relationships are 
invariant under two closely related transformations,

 (15.22)

and

 (15.23)
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or the two together give

 (15.24)

The similarity of the above to the transformations of quantum theory is evident. Thus 
(15.22) describes a transformation in which the field in one region is ‘exploded’ into the whole 
space (or else ‘imploded’ from the whole space into any one region). It therefore corresponds 
to a wave, which now comes in, not to a point, but to a region. It is therefore simply an 
extension of the implicate order to a theory in which we do not need to assume dimensionless 
points.

The equations (15.23) however describe a transformation in which the regions rather than 
the fields are ‘exploded’ or ‘imploded’. There is a complete symmetry between the implicate 
order as applied to fields and the implicate order applied to regions. This symmetry is similar 
to that between points and planes in projective geometry or to that of any element and its dual 
in ordinary geometry. It is different in that it is far more general and comprehensive in its 
possibilities.

This symmetry gives another intuitive image of the quantum mechanical symmetry in 
Hilbert space and of the symmetry of the bra and the ket of Dirac. As the invariant is a scalar 
product of a bra and a ket, so here the invariant p-set is the scalar product of a field and a region. 
Indeed from this symmetry it becomes clear that there is ultimately no distinction between the 
fields and space-time itself. Each is a dual description of the other. Physical quantities will then 
be invariants which can be interpreted as relations between fields or between regions.

In general these relationships will be nonlocal. Locality must be a special case. How 
then can we define locality? To do this, we must have an explicate order, i.e. one in which 
the elements are outside of each other and yet cover the whole space. A simple illustrative 
example of this would be a set of square elements in contact in such a way as to make 
up a square grid. To express their local contact, we can define a contact matrix Cij which 
is zero when the elements ij are not in contact and unity when they are. In this example, 
corresponding to each specific region Ri, Cij would have a certain four elements that were not 
zero, and these elements would define the neighbours of the region Ri. Each value of j would 
also define a direction from which could be built a line ordered according to the index j (with 
similar differences between successive elements).

But the whole theory must be invariant to an explosive transformation, i.e. an enfoldment 
into the implicate order. When this is done, the elements Cij will no longer have the simple 
structure of zeros and ones described above, but will be very complex. Yet they are in some 
sense implicitly describing the same order. Moreover if we simultaneously transform the 
field  in a dual way then the quantity  remains invariant, i.e.

 
(15.25)

The above is a kind of generalisation of the invariance that arises in general relativity. 
Given a set of contact matrices, Cij, we can ask whether or not it could be transformed 

completely into an explicate order. Of course this need not be a simple square lattice. 
Nevertheless more generally after the transformation each index i must be non-zero for a 
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relatively small number of indices j. It is not even necessary however that the pattern be the 
same for all indices i. Changes in the pattern may for example correspond to dislocations 
in the lattice.

Structures of the above general kind will be called ‘locally connected’. If there exist 
a transformation that reduces a given matrix, Cij, to a locally connected matrix,  we 
shall say Cij is in essence locally connected even though it appears to be non-local in the 
particular representation that we have chosen.

An interesting question arises if there is no matrix  which is locally connected. A 
similar question arises in general relativity when the metric tensor cannot be made diagonal 
over the whole space. In this case we have a new property called curvature. If Cij cannot be 
transformed into a locally connected matrix, this means that we have a ‘space’ which may 
be ‘locally explicate’ but which gradually enfolds as we move along the locally ordered 
lines. To picture this we can say that ‘wherever you are’ you may represent this as an 
‘ordinary local space’ but that there will be a horizon in which this space ‘dissolves’ into 
an implicate order. Such a ‘universe’ would not have a definite boundary, but would simply 
fade into something that does not manifest to us beyond its horizon. Nor would it have a 
beginning or an end. But rather it would similarly fade in the distant past and in the distant 
future. Yet, to anyone that was beyond our horizon, everything would be as definite (or 
indefinite) as it is to us. That is to say, there is a kind of relativity of the implicate order. 
Some new mathematical concept corresponding to curvature would have to be developed 
to express more precisely the distinction between an irreducibly implicate order and one 
that could be transformed as a whole into an explicate order.

Another interesting example of an irreducibly implicate order is one that could not be 
put in explicate form locally, but that could be approximately explicate on the larger scale. 
That is to say, the Cij matrices could not be reduced to some canonical form implying 
only local contact. This would mean, in general, that the non-zero elements of the contact 
matrix would spread out over whatever parameters with which we try to label the regions 
constituting our space. This would of course imply a general nonlocal contact between 
elements and would mean that the ordinary ideas of space as constituted of localisable 
elements would no longer hold. So processes that were associated with what we now call 
the Planck length would have to be described in what is an essentially quantum mechanical 
kind of space in which Cartesian notions of order would not even arise. Nevertheless the Cij 
matrices might have such properties that large sets of elements could be grouped together 
and that a transformation could be found in which these groups would have a simple 
contact matrix of a local nature that would give rise to an explicate order. In such a theory 
an ordinary geometrisable space could emerge in the ‘large’, while it had no meaning in the 
‘small’. Indeed these very words ‘large’ and ‘small’ would be somewhat misleading, since 
measure could prevail only in relation to the elements that are grouped together to give rise 
to a local contact matrix implying an explicate order.

We have been discussing how explicate orders, or approximations to such orders, could 
emerge from a ground that was irreducibly implicate as a whole. This is an example of 
how an explicate order arises as a particular case of the implicate order. We have here 
distinguished this case by requiring certain properties of the contact matrix. A similar 
procedure has already been explored in ordinary geometry through the Klein Erlanger 
programme [15]. Thus if we begin with projective geometry as our most general concept 
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we can obtain affine geometry as a particular case by distinguishing a plane at infinity. 
To obtain ordinary metric geometry, we merely have to distinguish a certain quadric on 
this plane and call this the circle at infinity. But from our starting point, even projective 
geometry is very special. Our first step is to obtain a simple explicate order without which 
the idea of geometry itself would have very little significance. We do this by distinguishing 
a particular implicate order as the explicate order. But this is possible only if the contact 
matrix has a suitable form. From here on we could try to go further in defining the equivalent 
to points, lines, planes etc. in terms of p-sets, and thus we would distinguish a particular 
case of the explicate order, i.e. one that is geometrisable as a whole. From here we could go 
on to projective, affine and metric geometries by further distinctions. If this were done then 
the whole of geometry would be invariant to enfoldment transformations in the implicate 
order. We could then say that the order of space (and ultimately of time) flowed out of a 
deeper implicate order of pre-space. Moreover this pre-space would have a structure that 
was inherently conformable to the laws of the quantum theory. We would thus be free of 
the present incoherence of trying to force quantum laws into a framework of a Cartesian 
order that is really only suitable for classical mechanics.

15.11 The super implicate order

Thus far we have been considering the implicate order mainly in relation to particle theories, 
but further interesting insights can be obtained by extending the notion of implicate order 
to quantum field theories. 

The classical field, which generally obeys a linear equation, has already been understood 
in terms of the implicate order, e.g. as in the example of the hologram. But when this field 
is quantised, a further kind of implicate order is introduced. We shall call this the super 
implicate order. The super implicate order is related to the implicate order as the implicate 
order, in particle theories, is related to the particles. Consider, for example, a particle which 
classically executes simple harmonic motion. Its equation of motion is linear

  

When this theory is quantised by bringing in a wave function ψ(x)= R(x) exp[iS(x)] the 
equation of motion becomes

 
 

where

 

 

As we have seen in earlier chapters, this not only makes the equation non-linear, but also 
introduces a force that depends on the whole quantum field and that reflects the activity of 
information (so that if we have several harmonic oscillators, we also obtain nonlocality).
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Similarly consider a classical linear field equation

 

 

As pointed out in chapter 11, when the theory is quantised, we bring in a wave functional

 
 

and the field equation becomes

 

 

where Q is given by (11.32). The wave equation now becomes nonlinear as well as nonlo-
cal, as happened in the particle theory.

The connection between wave and particle theories can be made yet more evident by 
considering the normal modes of the field theory. If qk is such a normal mode correspond-
ing to wave number k, then classically it satisfies the harmonic oscillator equation 

 
 

All the harmonic oscillators are independent. On quantisation, the wave functional can be 
written as

 
 

If we develop the field equations along the lines given in chapter 11, we obtain

 

 

where

 

 

Each of the oscillators now obeys a nonlinear equation and it is in general coupled to all 
the others.

As in the particle theory, the implicate order manifests in the activity of the particle 
through the quantum potential. It is clear then that in field theory there is a super implicate 
order that manifests in the field beables.
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The effect of the implicate order on the particle is to make its behaviour more wave-like 
than it would be in classical physics. However, as we have seen in chapter 11, section 
11.7, the effect of the super implicate order on the field beables is to oppose the classical 
tendency for waves to spread and to cause the wave field to be ‘swept in’ towards atoms, for 
example. The beables may now be regarded as the first implicate order. The super implicate 
order thus tends to organise the first implicate order into something more particle-like than 
it would be in classical physics.

At this point a little reflection shows that the whole idea of implicate order could be 
extended in a natural way. For if there are two levels of implicate order, why should there 
not be more? Thus if we regard the super implicate order as the second level, then we might 
consider a third level which was related to the second as the second is to the first. That is 
to say, the third implicate order would organise the second which would thereby become 
nonlinear. (For example there might be a tendency for the whole quantum state to collapse 
into something more definite.)

Evidently we could go on indefinitely to higher levels of implicate order. Since each is 
related to the one below, as the one below is related to the one still further below, we have 
a sequence of similar differences. In other words we have an order of implicate orders.

Thus far we have considered only a one-way connection of implicate orders in which 
the higher affects the lower but not the other way round. However, we could quite readily 
extend the idea to allow lower orders to affect the higher ones. At present we have very 
little to guide us as to how to do this, but we have indeed already considered a possibility 
of this kind in chapter 14, section 14.6. We proposed there to change Schrödinger’s wave 
equation so as to depend on the particle positions in a way that is similar to what is done in 
the approach of Ghirardi, Rimini and Weber [16] with regard to the position towards which 
the wave function is made to collapse. As a result of this change the wave function in our 
theory will tend to remain loosely associated with the particles and the empty channels 
would disappear so there would be a two-way relationship between wave function and 
particle. A similar tendency could be assumed such that all levels of implicate order would 
tend to be loosely associated with those below. Thus the order of implicate orders would be 
based on sequences of two-way relationships.

To develop such an order of implicate orders would require that we first obtain some 
notion of the third implicate order. At present there is very little to guide any speculations 
about this. It is however an interesting possibility that may be kept in mind for further 
exploration. The main suggestion that we have, at present, is that a third implicate order 
would require a superwave functional. This would imply that the wave functional is spread 
over a range of possibilities. But the notion of a density matrix can be thought of as implying 
the same sort of thing, i.e. a statistical spread over wave functions or over wave functional. 
If the density matrix were thus connected to the superwave functional, this would mean, for 
example, that a state of thermal equilibrium spreading over a range of energies is actually a 
reflection of some new property that flows out of the superwave functional.

Another possible area in which the super implicate order may be relevant is in 
consciousness as will be brought out in the next section of this chapter.
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15.12 The implicate order and consciousness

Several physicists have already suggested that quantum mechanics and consciousness are 
closely related and that the understanding of the quantum formalism requires that ulti-
mately we bring in consciousness in some role or other (e.g. Wigner [17], Everett [18] and 
Squires [19]). Throughout this book it has been our position that the quantum theory itself 
can be understood without bringing in consciousness and that as far as research in phys-
ics is concerned, at least in the present general period, this is probably the best approach. 
However, the intuition that consciousness and quantum theory are in some sense related 
seems to be a good one, and for this reason we feel that it is appropriate to include in this 
book a discussion of what this relationship might be.

Our proposal in this regard is that the basic relationship of quantum theory and con-
sciousness is that they have the implicate order in common. (For an extensive discussion 
of this approach see Bohm [20].) The essential features of the implicate order are, as we 
have seen, that the whole universe is in some way enfolded in everything and that each 
thing is enfolded in the whole. However, under typical conditions of ordinary experience, 
there is a great deal of relative independence of things, so that they may be abstracted 
as separately existent, outside of each other, and only externally related. However, more 
fundamentally the enfoldment relationship is active and essential to what each thing is, so 
that it is internally related to the whole and therefore to everything else. Nevertheless, the 
explicate order, which dominates ordinary ‘common sense’ experience as well as classical 
physics, appears to stand by itself. But actually this is only an approximation and it cannot 
be properly understood apart from its ground in the primary reality of the implicate order, 
i.e. the holomovement. All things found in the explicate order emerge from the holomove-
ment and ultimately fall back into it. They endure only for some time, and while they last, 
their existence is sustained in a constant process of unfoldment and re-enfoldment, which 
gives rise to their relatively stable and independent forms in the explicate order.

It takes only a little reflection to see that a similar sort of description will apply even 
more directly and obviously to consciousness, with its constant flow of evanescent thoughts, 
feelings, desires, urges and impulses. All of these flow into and out of each other and, in a 
certain sense, enfold each other (as, for example, we may say that one thought is implicit 
in another, noting that this word literally means enfolded).

A very clear illustrative example of this enfoldment can be seen by considering what 
takes place when one is listening to music. At a given moment, a certain note is being 
played, but a number of the previous notes are still ‘reverberating’ in consciousness. Close 
attention will show that it is the simultaneous presence and activity of all these related 
reverberations that is responsible for the direct and immediately felt sense of movement, 
flow and continuity, as well as for the apprehension of the general meaning of the music. To 
hear a set of notes so far apart in time that there is no consciousness of such reverberation 
will destroy altogether the sense of a whole unbroken living movement that gives meaning 
and force to what is being heard.

The sense of order in the above experience is very similar to what is implied in our 
model of a particle as a sequence of successive incoming and outgoing waves. Thus in 
section 15.9, we saw how a particle trajectory could be expressed at a given moment in 
terms of an order of spherical waves that are present at that moment. Here the outgoing 
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waves would correspond to ‘reverberations’, while the incoming waves would correspond 
to anticipations (which are also evidently present as we listen to the music). The essential 
point is that the whole movement is contained in this way at any given moment.

Of course not all of it is conscious at any given moment and a great deal may be 
unconscious. But even that which is unconscious and vaguely anticipatory may contain 
a whole movement. The most striking example of this is Mozart saying that the whole 
composition came to him almost in a flash and that from there on he was simply able to 
play it or to write it. Thus the whole was unfolded rather as the sequence of spheres is 
unfolded in our model.

Further similar examples can be obtained from visual experiences (e.g. as a series of 
similar frames in a movie sensed simultaneously can give rise to a feeling of movement). 
What all this suggests is that our most primary experience in consciousness actually is of 
an implicate order. And our perception of the explicate order is constituted mostly by a 
series of abstractions from this. To go into all this here would take us too far afield, but an 
account of it can be found elsewhere (Bohm [21]). To sum up then, in consciousness, as in 
quantum theory, the explicate order emerges from the implicate order as a relatively stable 
and self-determined domain and ultimately flows back into the implicate order.

The implicate order is not only the ground of perception, but also of the actual process 
of thought. For thought is based on information contained in the memory. We do not know 
a great deal of how memory works at present, but it does not seem that it operates through a 
one to one correspondence between, for example, an object and an image stored somewhere 
in the brain. Rather what is relevant for thought is the storage of many abstracted items 
of information, for example, about shape, colour, the uses of the object, the various things 
with which it is associated, etc. Indeed in our customary use of language we say that a 
certain content is re-collected, thus suggesting that this content is collected together from 
the whole of memory. The fact that it does seem to come from the whole can be seen 
with the aid of an elementary example. Thus English nouns ending in ‘-ation’ generally 
come from verbs ending in ‘-ate’. Thus ‘rotation’ comes from ‘rotate’. But this rule does 
not always hold. For example ‘inclination’ does not come from ‘inclinate’. The crucial 
point here is that we can tell immediately that ‘inclinate’ is not an accepted word, whereas 
‘rotate’ is. This strongly suggests that somehow our ‘re-collection’ is directly from a whole 
rather than the result of an algorithm for searching the memory in detail.

All of this is clearly compatible with the notion that the basic order of the mind is 
implicate and that the explicate arises as a particular case of this implicate order in much 
the way that we have suggested in this chapter for the quantum theory and for pre-space. 
So the various items of information that have been stored up may be regarded as somehow 
enfolded in the brain and indeed probably in the rest of the nervous system as well as in 
the muscles and organs.

It is clear moreover that this information is basically active rather than passive. We 
may easily verify this in our subjective experience. Suppose, for example, that on a dark 
night one encounters some shadows. If the memory contains information that there may 
be assailants in the neighbourhood this can give rise immediately to a sense of danger, 
with a whole range of possibilities (fight, flight, etc.). This is not what could be called 
purely a mental process, but includes an involuntary and essentially unconscious process 
of hormones, heartbeat and neuro-chemicals of various kinds, as well as physical tensions 
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and movements. However, if we look again and we see that it is only a shadow that 
confronts us, this thought has a calming effect and all this activity ceases. Such a response 
to information is extremely common (e.g. information that ‘X’ is a friend or enemy, good 
or bad etc.). More generally in consciousness, information is seen to be active in all these 
ways physically, chemically, electrically etc.

This sort of activity is evidently similar to that which was described in connection with 
quantum processes involving particles such as electrons, for which the information in the 
wave function was also active in the movement of the particle. At first sight, however, 
there may still seem to be a significant difference between these two cases. Thus, in our 
subjective experience, action can, in some cases at least, be mediated by reflection in 
conscious thought. On the other hand, in the case of the electron, the action of information 
is immediate. But actually, even if this happens, the difference is not as great as it might 
appear to be. For such reflection follows on the suspension of physical action. This gives 
rise to a train of thought. However, both a suspension of physical action and the resulting 
train of thought follow immediately from a further kind of active information implying the 
need to do this.

It seems clear from all this that at least in the context of the processes of thought, there 
is a kind of active information that is operating which is in key ways rather similar to 
that which operates in the action of the quantum potential. To clarify what this means in 
the present context, it is convenient to introduce the notion that consciousness shows or 
manifests on two sides which may be called the physical and the mental. Active information 
can serve as a kind of link or ‘bridge’ between these two sides. These latter are however 
inseparable, in the sense, for example, that information contained in thought, which we feel 
to be on the mental side, is at the same time a related neurophysiological, chemical and 
physical activity (which is clearly what is meant by the ‘material’ side of thought). 

We have however up to this point considered only a small part of the significance of 
thought. Thus, our thoughts may contain a whole range of information content of different 
kinds. This may in turn be surveyed by a higher level of mental activity, as if it were a 
material object at which one were ‘looking’. Out of this may emerge a yet more subtle 
level of information, whose meaning is an activity that is able to organise the original set 
of information into a greater whole. But even more subtle information of this kind can, in 
turn, be surveyed by a yet more subtle level of mental activity, and at least in principle this 
can go on indefinitely. Each of these levels may then be seen from both sides. From the 
mental side, it is a potentially active information content. But from the material side, it is 
an actual activity that operates to organise the less subtle levels, and the latter serve as the 
‘material’ on which such operation takes place.

The proposal is then that a similar relationship holds at indefinitely great levels of 
subtlety. It is being suggested that this possibility of going beyond any specifiable level of 
subtlety is the essential feature on which the possibility of intelligence is based.

It is interesting in this context to consider again the meaning of the word ‘subtle’. As stated 
in chapter 8, section 8.6, this is “rarefied, highly refined, delicate, elusive, indefinable”; its 
Latin root is sub-texere, which means “finely woven”. This suggest a metaphor for thought 
as a series of more and more closely woven nets. Each can ‘catch’ a certain content of 
a corresponding ‘fineness’. The finer nets cannot only show up the details of form and 
structure of what is ‘caught’ in the coarser nets; they can also hold within them a further 
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content that is implied in the latter. We have thus been led to an extension of the notion of 
implicate order, in which we have a series of inter-related levels. In these, the more subtle-
i.e. ‘the more finely woven’ levels including thought, feeling and physical reactions-both 
unfold and enfold those that are less subtle (i.e. ‘more coarsely woven’). In this series, the 
mental side corresponds, of course, to what is more subtle and the physical side to what 
is less subtle. And each mental side in turn becomes a physical side as we move in the 
direction of greater subtlety.

Let us now return to a consideration of the quantum theory. We have already seen that 
there is a basic similarity between the quantum behaviour of a system of electrons for 
example and the behaviour of mind. But if we wish to relate mental processes with quantum 
theory, this similarity will have to be extended. The simplest way of doing this is to use the 
idea of a series of implicate orders for matter in a way that has already been discussed in 
the previous section. So we are supposing that, like mental processes, physical processes 
are also capable of extension to indefinitely great levels of subtlety in a series of implicate 
orders with two-way relationships.

One may then ask what is the relationship between the physical and the mental processes? 
The answer that we propose here is that there are not two processes. Rather, it is being 
suggested that both are essentially the same. This means that that which we experience as 
mind, in its movement through various levels of subtlety, will, in a natural way ultimately 
move the body by reaching the level of the quantum potential and of the ‘dance’ of the 
particles. There is no unbridgeable gap or barrier between any of these levels. Rather, at 
each stage some kind of information is the bridge. This implies that the quantum potential 
acting on atomic particles, for example, represents only one stage in the process.

The content of our own consciousness is then some part of this overall process. It is 
thus implied that in some sense a rudimentary mind-like quality is present even at the level 
of particle physics, and that as we go to subtler levels, this mind-like quality becomes 
stronger and more developed. Each kind and level of mind may have a relative autonomy 
and stability. One may then describe the essential mode of relationship of all of these as 
participation, recalling that this word has two basic meanings, to ‘partake of and to ‘take 
part in’. Through enfoldment, each relatively autonomous level of mind partakes of the 
whole to one degree or another. Through this it partakes of all the others in its ‘gathering’ 
of information. And through the activity of this information, it similarly takes part in the 
whole and in every part. It is in this sort of activity that the content of the more subtle and 
implicate levels is unfolded (e.g. as the movement of the particle unfolds the meaning 
of the information that is implicit in the quantum field and as the movement of the body 
unfolds what is implicit in subtler levels of thought, feeling, etc.).

For the human being, all of this implies a thoroughgoing wholeness, in which mental 
and physical sides participate very closely in each other. Likewise, intellect, emotion, 
and the whole state of the body are in a similar flux of fundamental participation. Thus, 
there is no real division between mind and matter, psyche and soma. The common term 
psychosomatic is in this way seen to be misleading, as it suggests the Cartesian notion of 
two distinct substances in some kind of interaction.

Extending this view, we see that each human being similarly participates in an inseparable 
way in society and in the planet as a whole. What may be suggested further is that such 
participation goes on to a greater collective mind, and perhaps ultimately to some yet more 
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comprehensive mind in principle capable of going indefinitely beyond even the human 
species as a whole.

Finally, we may ask how we can understand this theory if the subtle levels are carried to 
infinity. Does the goal of comprehension constantly recede as we try to do this? We suggest 
that the appearance of such a recession is in essence just a feature of our language, which 
tends to give too much emphasis to the analytic side of our thought processes.

 

Figure 15.8: Magnetic poles as abstractions from an overall magnetic field

To explain what is meant here, one may consider the analogy of the poles of a magnet, 
which are likewise a feature of linguistic and intellectual analysis, and have no independent 
existence outside such analysis. As shown in figure 15.8, at every part of a magnet there is 
a potential pair of north and south poles that overlap each other. But these magnetic poles 
are actually abstractions, introduced for convenience of thinking about what is going on, 
while the whole process is a deeper reality-an unbroken magnetic field that is present over 
all space.

Similarly, we may for the sake of thinking about the subject, abstract any given level 
of subtlety out of the unbroken whole of reality and focus our attention on it. At each such 
level, there will be a ‘mental pole’ and a ‘physical pole’. Thus as we have already implied, 
even an electron has at least a rudimentary mental pole, represented mathematically by 
the quantum potential. Vice versa, as we have seen, even subtle mental processes have 
a physical pole. But the deeper reality is something beyond either mind or matter, both 
of which are only aspects that serve as terms for analysis.* These can contribute to our 
understanding of what is happening but are in no sense separate substances in interaction. 
Nor are we reducing one pole to a mere function or aspect of the other (e.g. as is done 
in materialsim and in idealism). The key point is, however, that before the advent of the 
quantum theory, our knowledge of matter as gained from the study of physics would have 
led us to deny that it could have a mental pole, which would enable it to participate with 
mind in the relationship that has been described here. We can now say that this knowledge 
See Marshall [22] for an account of an idea having important similarities with what has been 
proposed here. He, too, uses the notion of a general quantum reality as a basis for the bodily 
and mental realms, considered as inseparable sides or aspects. But he proposes to explain this 
from the quantum theory as it now stands in its usual interpretation. However, we have here 
used the ontological interpretation of the quantum theory with its additional concepts of par-
ticle trajectories and active information, and have assumed that ultimately the relationship of 
mental and material sides can be understood only by extending the scheme beyond the domain 
in which the current quantum theory is valid.
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of matter (as well as of mind) has changed in such a way as to support the approach that 
has been described here. To pursue this approach further might perhaps enable us to extend 
our knowledge of both poles into new domains.

15.13 Further extension to an overall approach

What we have done here opens up the possibility of an overall approach that encompasses all 
aspects of objective nature and of our subjective experience (e.g. as an observer and a thinker). 
To develop such an approach, we first note that not only inanimate nature, but also living 
nature, is to be understood in terms of the implicate order. Consider a tree, for example, which 
grows from a seed. Actually the seed makes a negligible contribution to the material substance 
of the plant and to the energy needed to make it grow. The substance comes from the air, water 
and soil, while the energy comes from the sun. In the absence of a seed, all these move in 
an implicate order of a relatively low level of subtlety (based, for example, on the order of the 
constituent particles). This brings about the constant re-creation of inanimate matter in various 
forms. However, through the information contained in the DNA molecule, the overall process is 
subtly altered so that it produces a living tree instead. All the streams of matter and energy 
which had hitherto developed in an unorganised way, now begin to bring substance and 
energy to the plant, which grows and eventually decays to fall back into inanimate matter.

At no stage is there a break in this process. For example one would not wish to say 
that an ‘inanimate’ molecule of carbon dioxide enters the tree and suddenly becomes 
‘alive’, or that the oxygen molecule suddenly ‘dies’ when it leaves the tree. Rather, life 
is eternally enfolded in matter and more deeply in the underlying ground of a generalised 
holomovement as is mind and consciousness. Under suitable conditions, all of these unfold 
and evolve to become manifest in ever higher stages of organisation.

The notion of a separate organism is clearly an abstraction, as is also its boundary. 
Underlying all this is unbroken wholeness even though our civilisation has developed in 
such a way as to strongly emphasise the separation into parts.

In this whole process, it is clear that the observer along with his thoughts is contained in 
an inseparable way. For example, the general theories of physics (including the very one we 
are proposing here) are an extension of this process. What such a theory produces is a kind 
of reflection of reality as a whole. As explained in chapter 14, section 14.1, this provides 
another aspect or appearance of the whole. We may usefully regard this appearance as a 
kind of mirror through which reality is perceived. Classical physics provided a mirror that 
reflected only the objective structure of the human being who was the observer. There is 
no room in this scheme for his mental process which is thus regarded as separate or as a 
mere ‘epiphenomenon’ of the objective processes. As we have seen throughout this book, 
however, quantum physics interpreted ontologically and extended in a natural way makes 

For other recent attempts to consider the mind-matter relation in the light of the 
quantum theory, see Penrose [23] and Lockwood [24]. For a discussion of the notions 
of active information and implicate order by a number of authors, see Pylkkänen [25].
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possible a reflection even of the subtle mental aspects of the observer. Thus, through this 
mirror the observer sees ‘himself both physically and mentally in the larger setting of the 
universe as a whole. There is no need, therefore, to regard the observer as basically separate 
from what he sees, nor to reduce him to an epiphenomenon of the objective process. 
Indeed the notion of separateness is an abstraction and an approximation valid for only 
certain limited purposes. More broadly one could say that through the human being, the 
universe is making a mirror to observe itself. Or vice versa the universe could be regarded 
as continuous with the body of the human being. After all, this latter, like the plant, gets all 
its substance and energy from the universe and eventually falls back into it. Evidently the 
human being could not exist without this context (which has very misleadingly been called 
an environment).

Although the implicate order is a theory of the whole, it is in no sense a’theory of 
everything’. Or to put it differently we do not expect any ‘mirror’ to provide a complete 
and perfect reflection of reality as a whole. Every mirror abstracts only some features of 
the world and reflects them only to a limited degree of accuracy as well as from a limited 
perspective. We emphasise again that physical theories share in this sort of limit as much 
as all other forms of knowledge. For our thought is always a limited abstraction from the 
indefinitely great subtlety of the implicate order as a whole. We can always extend it, but 
then it will always still be limited. And beyond these limits, there is always indefinitely 
more that has not been grasped in thought.

At the very least, the above is what would be implied by our proposal of an order of 
ever increasing orders of subtlety in the implicate order. But probably the whole scheme 
of the implicate order will be found to be limited too, and will eventually have to be 
contained in some yet more comprehensive idea. More generally, we are not asserting 
finality for any of the ideas that we propose here. All proposals are points of departure for 
exploration. Eventually some of them may be developed so far that we may take them as 
working hypotheses. But in principle we will be ready to modify them or even to drop them 
whenever we find evidence for doing this. This applies even to the very idea that we are 
discussing at this moment. We suggest that the approach outlined above is more coherent 
than one in which we either tacitly or explicitly take specified features of our ideas as 
finally fixed and absolutely true.

In particular we would say here that certain features of theories that have attempted 
to cover both mind and matter, for example, those proposed by Everett [18] and by Gell-
Mann and Hartle [8], do imply that mind is a rather limited sort of system (that could 
be completely covered for example by the notion of an ‘information gathering and 
utilising system’ (IGUS)). No doubt mind is capable of doing this sort of thing. But a 
little observation shows that it is much richer in its capabilities. In particular, if a human 
being is nothing more than such a system he is effectively reduced to a kind of machine. 
How then would we understand creativity? Perhaps we could say it is an illusion brought 
about by our not having complete knowledge of how the machine works. But we can 
ask how can it be known that this is all that we are? Thus, in the time of Newton, people 
compared everything including living beings to a clockwork and at later times the brain 
and nervous system were compared to a telephone exchange. It is now being compared to 
a super computer. In each age people use the latest technological developments as models 
for the mind. Very probably in another century or so the whole notion of computers will be 



Quantum theory and the implicate order 327

seen as rather limited and perhaps even as outmoded as nineteenth-century machines are 
now thought to be. Doubtless we will then have a still more intricate machine with which 
one could compare the mind if one chose to do so.

This whole approach seems to be affected with irreducible contingency. There is really 
no necessity for it at all. We are therefore free, if we so choose, to explore the broader 
approach to mind and matter, and therefore to the whole of reality, that we have been 
discussing here and throughout the rest of the book.
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